The impact of source credible online reviews on purchase intention: The mediating roles of brand equity dimensions

Chakraborty U, (2019), The impact of source credible online reviews on purchase intention: The mediating roles of brand equity dimensions, Journal of Research in Interactive Marketing, Vol.13, pp 142-161.

Mots-clefs : capital de marque, avis en ligne, intention d’achat, notoriété de la marque, la valeur perçue de la marque,

Résumé : Cette étude a pour but de souligner l’importance des dimensions du capital de marque qui jouent un rôle de médiateur entre les avis en ligne et l’intention d’achat du consommateur. De nombreux consommateurs considèrent les avis en ligne comme une source d’information plus crédible que les autres sources d’information traditionnelles (Fang et al., 2016).
Les consommateurs ont le plus haut niveau de confiance dans les canaux partagés comme les évaluations des consommateurs en ligne ou les médias sociaux. Les consommateurs recherchent généralement les opinions et les recommandations d’autres consommateurs pour évaluer la performance de la marque (Jacobsen, 2018).

“Les dimensions de la valeur de la marque sont affectées lorsque les consommateurs passent en revue diverses évaluations en ligne sur les marques (qu’ils perçoivent comme crédibles) et essaient de les évaluer pour porter un jugement sur la marque (Buil et al., 2013 ; Rios et Riquelme, 2010).”

Conclusion : Cette étude conclut en affirmant que la notoriété de la marque et la valeur perçue, ont un effet de médiation partiel significatif entre les avis en ligne crédibles de la source et l’intention d’achat.
La personnalité de la marque, l’association organisationnelle et la qualité perçue, n’ont eu aucun effet de médiation entre les avis en ligne crédibles et l’intention d’achat.
Dans cette étude les consommateurs indiens utilisent les avis en ligne pour connaître la marque et son rapport coût-efficacité, ce qui influence leur intention d’achat. Les consommateurs indiens préfèrent une recommandation sur le caractère unique de la marque de la part d’une personne qu’ils connaissent personnellement plutôt qu’une recommandation en ligne émanant d’un étranger.

Sources :

Aaker, D.A. (1991), Managing Brand Equity, Free Press, New York, NY.

Aaker, D.A. (1996), “Measuring brand equity across products and markets”, California Management Review, Vol. 38 No. 3, pp. 102-120.

Ahmad, A. and Thyagaraj, K.S. (2017), “An empirical comparison of two brand personality scales: evidence from India”, Journal of Retailing and Consumer Services, Vol. 36, pp. 86-92.

Barreda, A.A., Bilgihan, A., Nusair, K. and Okumus, F. (2015), “Generating brand awareness in online social networks”, Computers in Human Behavior, Vol. 50, pp. 600-609.

Baxter, S., Ilicic, J. and Kulczynski, A. (2015), “What’s in a name? Examining the effect of phonetic fit between spokesperson name and product attributes on source credibility”, Marketing Letters, Vol. 26 No. 4, pp. 525-534.

Beneke, J., de Sousa, S., Mbuyu, M. and Wickham, B. (2016), “The effect of negative online customer reviews on brand equity and purchase intention of consumer electronics in South Africa”, The International Review of Retail, Distribution and Consumer Research, Vol. 26 No. 2, pp. 171-201.

Bruhn, M., Schoenmueller, V. and Schäfer, D.B. (2012), “Are social media replacing traditional media in terms of brand equity creation?”, Management Research Review, Vol. 35 No. 9, pp. 770-790.

Buil, I., de Chernatony, L. and Martínez, E. (2008), “A cross-national validation of the consumer-based brand equity scale”, Journal of Product and Brand Management, Vol. 17 No. 6, pp. 384-392.

Buil, I., Martínez, E. and de Chernatony, L. (2013), “The influence of brand equity on consumer responses”, Journal of Consumer Marketing, Vol. 30 No. 1, pp. 62-74.

Callegaro, M., Manfreda, K.L. and Vehovar, V. (2015), Web Survey Methodology, Sage, London.

Chan, Y.Y. and Ngai, E.W. (2011), “Conceptualising electronic word of mouth activity: an input-process-output perspective”, Marketing Intelligence and Planning, Vol. 29 No. 5, pp. 488-516.

Chang, H.H. and Liu, Y.M. (2009), “The impact of brand equity on brand preference and purchase intentions in the service industries”, The Service Industries Journal, Vol. 29 No. 12, pp. 1687-1706.

Chang, H.H., Tsai, Y.C., Wong, K.H., Wang, J.W. and Cho, F.J. (2015), “The effects of response strategies and severity of failure on consumer attribution with regard to negative word-of-mouth”, Decision Support Systems, Vol. 71, pp. 48-61.

Cheung, C.M. and Thadani, D.R. (2012), “The impact of electronic word-of-mouth communication: a literature analysis and integrative model”, Decision Support Systems, Vol. 54 No. 1, pp. 461-470.

Cheung, M.Y., Luo, C., Sia, C.L. and Chen, H. (2009), “Credibility of electronic word-of-mouth: informational and normative determinants of on-line consumer recommendations”, International Journal of Electronic Commerce, Vol. 13 No. 4, pp. 9-38.

Danner, D., Hagemann, D. and Fiedler, K. (2015), “Mediation analysis with structural equation models: combining theory, design, and statistics”, European Journal of Social Psychology, Vol. 45 No. 4, pp. 460-481.

de Oliveira, M.O.R., Silveira, C.S. and Luce, F.B. (2015), “Brand equity estimation model”, Journal of Business Research, Vol. 68 No. 12, pp. 2560-2568.

Djafarova, E. and Rushworth, C. (2017), “Exploring the credibility of online celebrities’ Instagram profiles in influencing the purchase decisions of young female users”, Computers in Human Behavior, Vol. 68, pp. 1-7.

Dwivedi, A., Nayeem, T. and Murshed, F. (2018), “Brand experience and consumers’ willingness-to-pay (WTP) a price premium: mediating role of brand credibility and perceived uniqueness”, Journal of Retailing and Consumer Services, Vol. 44, pp. 100-107.

E&Y (2015), “Social media marketing – India trends study”, available at: www.ey.com/Publication/vwLUAssets/EY-social-media-marketing-india-trends-study-2014/$FILE/EY-social-media-marketing-india-trends-study-2014.pdf (accessed 15 January 2016).

Erkan, I. and Evans, C. (2016), “The influence of eWOM in social media on consumers’ purchase intentions: an extended approach to information adoption”, Computers in Human Behavior, Vol. 61, pp. 47-55.

Fang, B., Ye, Q., Kucukusta, D. and Law, R. (2016), “Analysis of the perceived value of online tourism reviews: influence of readability and reviewer characteristics”, Tourism Management, Vol. 52, pp. 498-506.

Freeman, K.S. and Spyridakis, J.H. (2004), “An examination of factors that affect the credibility of online health information”, Technical Communication, Vol. 51 No. 2, pp. 239-263.

Goldsmith, R.E. and Flynn, L.R. (2004), “Psychological and behavioral drivers of online clothing purchase”, Journal of Fashion Marketing and Management: An International Journal, Vol. 8 No. 1, pp. 84-95.

Gunther, A.C. (1992), “Biased press or biased public? Attitudes toward media coverage of social groups”, Public Opinion Quarterly, Vol. 56 No. 2, pp. 147-167.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010), Multivariate Data Analysis, Prentice Hall, Upper Saddle River, NJ.

Hayes, R.A. and Carr, C.T. (2015), “Does being social matter? Effects of enabled commenting on credibility and brand attitude in social media”, Journal of Promotion Management, Vol. 21 No. 3, pp. 371-390.

Hazée, S., Van Vaerenbergh, Y. and Armirotto, V. (2017), “Co-creating service recovery after service failure: the role of brand equity”, Journal of Business Research, Vol. 74, pp. 101-109.

Heider, F. (1958), The Psychology of Interpersonal Relations, John Wiley and Sons, New York, NY.

Hlee, S., Lee, J., Yang, S.B. and Koo, C. (2018), “The moderating effect of restaurant type on hedonic versus utilitarian review evaluations”, International Journal of Hospitality Management, Vol. 77, pp. 195-206.

Homburg, C., Klarmann, M. and Schmitt, J. (2010), “Brand awareness in business markets: when is it related to firm performance?”, International Journal of Research in Marketing, Vol. 27 No. 3, pp. 201-212.

Hovland, C.I. and Weiss, W. (1951), “The influence of source credibility on communication effectiveness”, Public Opinion Quarterly, Vol. 15 No. 4, pp. 635-650.

Hsu, C.L., Chen, M.C., Kikuchi, K. and Machida, I. (2017), “Elucidating the determinants of purchase intention toward social shopping sites: a comparative study of Taiwan and Japan”, Telematics and Informatics, Vol. 34 No. 4, pp. 326-338.

Huang, R. and Sarigöllü, E. (2012), “How Brand awareness relates to market outcome, brand equity, and the marketing mix”, Journal of Business Research, Vol. 65 No. 1, pp. 92-99.

IBEF (2018), “E-commerce sector in India”, available at: www.ibef.org/industry/ecommerce.aspx (accessed 11 October 2018).

Jacobsen, S. (2018), “Why did I buy this? The effect of WOM and online reviews on post purchase attribution for product outcomes”, Journal of Research in Interactive Marketing, Vol. 12 No. 3, pp. 370-395.

Jeng, S.P. (2017), “Increasing customer purchase intention through product return policies: the pivotal impacts of retailer brand familiarity and product categories”, Journal of Retailing and Consumer Services, Vol. 39, pp. 182-189.

Kamalul Ariffin, S., Mohan, T. and Goh, Y.N. (2018), “Influence of consumers’ perceived risk on consumers’ online purchase intention”, Journal of Research in Interactive Marketing, Vol. 12 No. 3, pp. 309-327.

Kang, M., Shin, D.H. and Gong, T. (2016), “The role of personalization, engagement, and trust in online communities”, Information Technology and People, Vol. 29 No. 3, pp. 580-596.

Keller, K.L. (1993), “Conceptualizing, measuring, and managing customer-based brand equity”, The Journal of Marketing, Vol. 57 No. 1, pp. 1-22.

Keller, K.L., Parameswaran, M.G. and Jacob, I. (2011), Strategic Brand Management: Building, Measuring, and Managing Brand Equity, Pearson Education, Bengaluru.

Kim, H., Suh, K.S. and Lee, U.K. (2013), “Effects of collaborative online shopping on shopping experience through social and relational perspectives”, Information and Management, Vol. 50 No. 4, pp. 169-180.

Kim, S.S., Choe, J.Y.J. and Petrick, J.F. (2018), “The effect of celebrity on brand awareness, perceived quality, brand image, brand loyalty, and destination attachment to a literary festival”, Journal of Destination Marketing and Management, Vol. 9, pp. 320-329.

Kluge, P.N. and Fassnacht, M. (2015), “Selling luxury goods online: effects of online accessibility and price display”, International Journal of Retail and Distribution Management, Vol. 43 Nos 10/11, pp. 1065-1082.

KPMG (2017), “The truth about online consumers: 2017 global online consumer report”, available at: https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2017/01/the-truth-about-online-consumers.pdf (accessed 12 august 2017).

Lassar, W., Mittal, B. and Sharma, A. (1995), “Measuring customer-based brand equity”, Journal of Consumer Marketing, Vol. 12 No. 4, pp. 11-19.

Lee, W.I., Cheng, S.Y. and Shih, Y.T. (2017), “Effects among product attributes, involvement, word-of-mouth, and purchase intention in online shopping”, Asia Pacific Management Review, Vol. 22 No. 4, pp. 1-7.

Liu, X., Hu, J. and Xu, B. (2017b), “Does eWOM matter to brand extension? An examination of the impact of online reviews on brand extension evaluations”, Journal of Research in Interactive Marketing, Vol. 11 No. 3, pp. 232-245.

Liu, M.T., Wong, I.A., Tseng, T.H., Chang, A.W.Y. and Phau, I. (2017a), “Applying consumer-based brand equity in luxury hotel branding”, Journal of Business Research, Vol. 81, pp. 192-202.

MacCallum, R.C., Widaman, K.F., Zhang, S. and Hong, S. (1999), “Sample size in factor analysis”, Psychological Methods, Vol. 4 No. 1, pp. 84-99.

MacKinnon, D.P., Fairchild, A.J. and Fritz, M.S. (2007), “Mediation analysis”, Annual Review of Psychology, Vol. 58, pp. 593-614.

Malhotra, N.K. and Dash, S. (2011), Marketing Research: An Applied Orientation, Pearson Education, New Delhi.

Martínez-López, F.J., Anaya-Sánchez, R., Molinillo, S., Aguilar-Illescas, R. and Esteban-Millat, I. (2017), “Consumer engagement in an online brand community”, Electronic Commerce Research and Applications, Vol. 23, pp. 24-37.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Mullen, B. and Johnson, C. (2013), The Psychology of Consumer Behavior, Psychology Press, London.

Mumuni, A.G., Lancendorfer, K.M., O’Reilly, K.A. and MacMillan, A. (2018), “Antecedents of consumers’ reliance on online product reviews”, Journal of Research in Interactive Marketing, Vol. 13 No. 1, pp. 26-46, available at: https://doi.org/10.1108/JRIM-11-2017-0096

Neirotti, P., Raguseo, E. and Paolucci, E. (2016), “Are customers’ reviews creating value in the hospitality industry? Exploring the moderating effects of market positioning”, International Journal of Information Management, Vol. 36 No. 6, pp. 1133-1143.

Nunnally, J. (1978), Psychometric Theory, McGraw Hill, New York, NY.

O’Neil, J. and Eisenmann, M. (2017), “An examination of how source classification impacts credibility and consumer behavior”, Public Relations Review, Vol. 43 No. 2, pp. 278-292.

Pappu, R., Quester, P.G. and Cooksey, R.W. (2005), “Consumer-based brand equity: improving the measurement-empirical evidence”, Journal of Product and Brand Management, Vol. 14 No. 3, pp. 143-154.

Park, D.H. and Kim, S. (2008), “The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews”, Electronic Commerce Research and Applications, Vol. 7 No. 4, pp. 399-410.

Park, J.H. and Kim, M.K. (2016), “Factors influencing the low usage of smart TV services by the terminal buyers in Korea”, Telematics and Informatics, Vol. 33 No. 4, pp. 1130-1140.

Phua, J., Jin, S.V. and Kim, J.J. (2017), “Gratifications of using Facebook, Twitter, Instagram, or Snapchat to follow brands: the moderating effect of social comparison, trust, tie strength, and network homophily on brand identification, brand engagement, brand commitment, and membership intention”, Telematics and Informatics, Vol. 34 No. 1, pp. 412-424.

Rana, A., Bhat, A. and Rani, L. (2015), “A classificatory scheme for antecedents of the sources of ‘online brand equity”, Journal of Research in Interactive Marketing, Vol. 9 No. 4, pp. 262-298.

Ranfagni, S., Camiciottoli, B.C. and Faraoni, M. (2016), “How to measure alignment in perceptions of brand personality within online communities: interdisciplinary insights”, Journal of Interactive Marketing, Vol. 35, pp. 70-85.

Rios, R.E. and Riquelme, H.E. (2010), “Sources of brand equity for online companies”, Journal of Research in Interactive Marketing, Vol. 4 No. 3, pp. 214-240.

Shan, Y. (2016), “How credible are online product reviews? The effects of self-generated and system-generated cues on source credibility evaluation”, Computers in Human Behavior, Vol. 55, pp. 633-641.

Shareef, M.A., Mukerji, B., Dwivedi, Y.K., Rana, N.P. and Islam, R. (2019), “Social media marketing: comparative effect of advertisement sources”, Journal of Retailing and Consumer Services, Vol. 46, pp. 58-69.

Shi, X. and Liao, Z. (2017), “Online consumer review and group-buying participation: the mediating effects of consumer beliefs”, Telematics and Informatics, Vol. 34 No. 5, pp. 605-617.

Shin, D. (2015), “Beyond user experience of cloud service: implication for value sensitive approach”, Telematics and Informatics, Vol. 32 No. 1, pp. 33-44.

Sposito, V.A., Hand, M.L. and Skarpness, B. (1983), “On the efficiency of using the sample kurtosis in selecting optimal lpestimators”, Communications in Statistics-Simulation and Computation, Vol. 12 No. 3, pp. 265-272.

Statista (2018), “Leading countries based on number of Facebook users as of July 2018”, available at: www.statista.com/statistics/268136/top-15-countries-based-on-number-offacebook-users/ (accessed 11 October 2018).

Tamimi, N. and Sebastianelli, R. (2016), “How e-tailing attributes affect perceived quality: the potential impact of customer demographics and online behaviors”, The TQM Journal, Vol. 28 No. 4, pp. 547-560.

TechinAsia (2017), “Facebook has a big women problem in India”, available at: www.techinasia.com/facebook-india-women-problem (accessed 11 October 2018).

Todd, P.R. and Melancon, J. (2018), “Gender and live-streaming: source credibility and motivation”, Journal of Research in Interactive Marketing, Vol. 12 No. 1, pp. 79-93.

Visentin, M., Pizzi, G. and Pichierri, M. (2019), “Fake news, real problems for brands: the impact of content truthfulness and source credibility on consumers’ behavioral intentions toward the advertised brands”, Journal of Interactive Marketing, Vol. 45, pp. 99-112.

we are social (2018), “Digital in 2018: World’s internet users pass the 4 billion mark”, available at: https://wearesocial.com/blog/2018/01/global-digital-report-2018 (accessed 10 October 2018).

Wood, L. (2000), “Brands and brand equity: definition and management”, Management Decision, Vol. 38 No. 9, pp. 662-669.

Wu, J.H., Wu, C.W., Lee, C.T. and Lee, H.J. (2015), “Green purchase intentions: an exploratory study of the Taiwanese electric motorcycle market”, Journal of Business Research, Vol. 68 No. 4, pp. 829-833.

Wu, P.C. and Wang, Y.C. (2011), “The influences of electronic word-of-mouth message appeal and message source credibility on brand attitude”, Asia Pacific Journal of Marketing and Logistics, Vol. 23 No. 4, pp. 448-472.

Wu, P.C., Yeh, G.Y.Y. and Hsiao, C.R. (2011), “The effect of store image and service quality on brand image and purchase intention for private label brands”, Australasian Marketing Journal (AMJ), Vol. 19 No. 1, pp. 30-39.

Wu, T.Y. and Lin, C.A. (2017), “Predicting the effects of eWOM and online brand messaging: source trust, bandwagon effect and innovation adoption factors”, Telematics and Informatics, Vol. 34 No. 2, pp. 470-480.

Yoo, B., Donthu, N. and Lee, S. (2000), “An examination of selected marketing mix elements and brand equity”, Journal of the Academy of Marketing Science, Vol. 28 No. 2, pp. 195-211.

Zaichkowsky, J.L. (1985), “Measuring the involvement construct”, Journal of Consumer Research, Vol. 12 No. 3, pp. 341-352.

Zeithaml, V.A. (1988), “Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence”, The Journal of Marketing, Vol. 52 No. 3, pp. 2-22.

Usefulness, funniness, and coolness votes of viewers: An analysis of social shoppers’ online reviews

Lee I, (2018), Usefulness, funniness, and coolness votes of viewers: An analysis of social shoppers’ online reviews, Industrial Management & Data Systems, Vol. 118, pp. 700-713.

Mots-clefs : acheteurs sociaux, social shopping, avis en ligne, évaluation, notes d’évaluation, contenu de l’évaluation, profils des acheteurs sociaux.

Résumé : Cet article a pour but d’évaluer les relations entre cinq caractéristiques des évaluations en ligne des acheteurs sociaux : le nombre d’évaluations faites par un évaluateur, le nombre d’amis d’un évaluateur, la note d’évaluation, le nombre de mots d’évaluation et les images/photos.
Les avis en ligne sont perçus comme plus utiles que les communications des marques et entreprises, étant plus impartiales et donc non portée par un objectif commercial.

Le social shopping est le fait de vendre ses produits via des plateformes en ligne spécialisée dans la vente avec remise élevée (ex : Groupon). Cette expérience d’achat est généralement immédiate et représente souvent une première expérience. De ce fait les avis d’autres consommateurs deviennent un critère d’évaluation essentiel.

Les sites d’évaluation en ligne aident les acheteurs sociaux à prendre des décisions éclairées sur les produits/services. Les acheteurs sociaux sont différents des acheteurs traditionnels, ils sont décisifs, ils connaissent les technologies et sont bien informés. Les clients de groupes sont beaucoup plus critiques que les clients réguliers, avec des commentaires plus sévères, et beaucoup sont des clients de passage sensibles au prix.

“Les évaluations en ligne permettent aux consommateurs de partager leur expérience directe avec d’autres consommateurs qui s’attendent à ce que l’évaluation soit crédible et utile pour leur expérience future (Casalo et al., 2010).”

Conclusion : Cette étude montre que la perception de l’utilité, de l’humour et de la sérénité des spectateurs peut dépendre de la combinaison des notes d’évaluation, du contenu de l’évaluation et des profils des acheteurs sociaux.
L’article prouve que le nombre de mot est important pour les récepteurs de l’avis.
Un évaluateur qui a plus d’amis dans son réseau social et qui écrit des commentaires plus longs a tendance à avoir plus d’influence sur la valeur perçue de l’évaluation. Il est ainsi plus crédible aux yeux des récepteurs de l’avis.

Sources :

Allsop, D.T., Bassett, B.R. and Hoskins, J.A. (2007), “Word of mouth research: principles and applications”, Journal of Advertising Research, Vol. 47 No. 4, pp. 398-411.

Amblee, N. and Bui, T. (2011-2012), “Harnessing the influence of social proof in online shopping: the effect of electronic word of mouth on sales of digital microproducts”, International Journal of Electronic Commerce, Vol. 16 No. 2, pp. 91-113.

Aral, S. (2014), “The problem with online ratings”, Sloan Management Review, Vol. 55 No. 2, pp. 47-52.

Baek, H., Ahn, J.H. and Choi, Y. (2012-2013), “Helpfulness of online reviews: readers’ objectives and review cues”, International Journal of Electronic Commerce, Vol. 17 No. 2, pp. 99-126.

Bansal, H.S. and Voyer, P.A. (2000), “Word-of-mouth processes within a services purchase decision context”, Journal of Service Research, Vol. 3 No. 2, pp. 166-177.

Brown, J.J. and Reingen, P.H. (1987), “Social ties and word-of-mouth referral behavior”, Journal of Consumer Research, Vol. 14 No. 3, pp. 350-362.

Brown, T.J., Barry, T.E. and Dacin, P.A. (2005), “Spreading the word: investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context”, Journal of the Academy of Marketing Science, Vol. 33 No. 2, pp. 123-138.

Cantallops, A.S., Salvi, F. and Cardona, J.R. (2016), “Impacts of eWOM on hotels from the consumer and company perspective”, in Lee, I. (Ed.), Encyclopedia of E-Commerce Development, Implementation, and Management, IGI Global, Hershey, PA, pp. 2017-2029.

Casalo, L.V., Flavian, C. and Guinaliu, M. (2010), “Determinants of the intention to participate in firm-hosted online travel communities and effects on consumer behavioral intentions”, Tourism Management, Vol. 31 No. 6, pp. 898-911.

Cha, M., Haddadi, H., Benevenuto, F. and Gummadi, K.P. (2010), “Measuring user influence in twitter: the million follower fallacy”, Proceedings of 4th International AAAI Conference on Weblogs and Social Media, pp. 10-17.

Charney, T.R. and Greenberg, B.S. (2002), “Uses and gratifications of the internet”, in Lin, C. and Atkin, D. (Eds), Communication, Technology and Society: New Media Adoption and Uses, Hampton Press, Cresskill, NJ, pp. 379-407.

Chen, H., Chiang, R.H. and Storey, V.C. (2012), “Business intelligence and analytics: from big data to big impact”, MIS Quarterly, Vol. 36 No. 4, pp. 1165-1188.

Cheung, M.Y., Luo, C., Sia, C.L. and Chen, H. (2009), “Credibility of electronic word-of-mouth: information and normative determinants of online consumer recommendations”, International Journal of Electronic Commerce, Vol. 13 No. 4, pp. 9-38.

Cheung, Y. and Ho, H. (2015), “Social influence’s impact on reader perceptions of online reviews”, Journal of Business Research, Vol. 68 No. 4, pp. 883-887.

Chevalier, J.A. and Mayzlin, D. (2006), “The effect of electronic word of mouth on sales: online book reviews”, Journal of Marketing Research, Vol. 43 No. 3, pp. 345-354.

Chiu, H.-C., Hsieh, Y.-C., Kao, Y.-H. and Lee, M. (2007), “The determinants of email receivers’ disseminating behaviors on the internet”, Journal of Advertising Research, Vol. 47 No. 4, pp. 524-534.

Cruz, D. and Fill, C. (2008), “Evaluating viral marketing: isolating the key criteria”, Marketing Intelligence & Planning, Vol. 26 No. 7, pp. 743-758.

Datta, P.R., Chowdhury, D.N. and Chakraborty, B.R. (2005), “Viral marketing: new form of word-of-mouth through internet”, The Business Review, Vol. 3 No. 2, pp. 69-75.

De Bruyn, A. and Lilien, G. (2008), “A multi-stage model of word-of-mouth influence through viral marketing”, International Journal of Research in Marketing, Vol. 25 No. 3, pp. 151-163.

Derbaix, C. and Vanhamme, J. (2003), “Inducing word-of-mouth by eliciting surprise – a pilot investigation”, Journal of Economic Psychology, Vol. 24 No. 1, pp. 99-116.

Granovetter, M.S. (1973), “The strength of weak ties”, American Journal of Sociology, Vol. 78 No. 6, pp. 1360-1380.

Hennig-Thurau, T. and Walsh, G. (2003-2004), “Electronic word of mouth: motives for and consequences of reading customer articulations on the internet”, International Journal of Electronic Commerce, Vol. 8 No. 2, pp. 51-74.

Hennig-Thurau, T., Gwinner, K.P., Walsh, G. and Gremler, D.D. (2004), “Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet?”, Journal of Interactive Marketing, Vol. 18 No. 1, pp. 38-52.

Hsu, L.C., Chih, W.H. and Liou, D.K. (2016), “Investigating community members’ eWOM effects in Facebook fan page”, Industrial Management & Data Systems, Vol. 116 No. 5, pp. 978-1004.

Katona, Z., Zubcsek, P.P. and Sarvary, M. (2011), “Network effects and personal influences: the diffusion of an online social network”, Journal of Marketing Research, Vol. 48 No. 3, pp. 425-443.

Kim, H.D., Lee, I. and Lee, C.K. (2013), “Building Web 2.0 enterprises: a study of small and medium enterprises in the United States”, International Small Business Journal, Vol. 31 No. 2, pp. 156-174.

Kim, Y. and Na, J. (2007), “Effects of celebrity athlete endorsement on attitude towards the product: the role of credibility, attractiveness and the concept of congruence”, International Journal of Sports Marketing and Sponsorship, Vol. 8 No. 4, pp. 23-33.

Kozinets, R.V., Valck, K., Wojnicki, A.C. and Wilner, S.J.S. (2010), “Networked narratives: understanding word-of-mouth marketing in online communities”, Journal of Marketing, Vol. 74 No. 2, pp. 71-89.

Lafferty, B.A. and Goldsmith, R.E. (1999), “Corporate credibility’s role in consumers’ attitudes and purchase intentions when a high versus low credibility endorser is used in the ad”, Journal of Business Research, Vol. 44 No. 2, pp. 109-116.

Lee, I. (2016), “Using Groupon for health and wellness businesses”, Business Horizons, Vol. 59 No. 4, pp. 369-377.

Lee, I. (2017), “A study of the effect of social shopping deals on online reviews”, Industrial Management and Data Systems, Vol. 117 No.10, pp. 2227-2240.

Lee, I. and Lee, K. (2012), “Social shopping promotions from a social merchant’s perspective”, Business Horizons, Vol. 55 No. 5, pp. 441-451.

Lee, J., Park, D.-H. and Han, I. (2008), “The effect of negative online consumer reviews on product attitude: an information processing view”, Electronic Commerce Research and Applications, Vol. 7 No. 3, pp. 341-352.

Lee, S.G., Trimi, S. and Yang, C.G. (2017), “Perceived usefulness factors of online reviews: a study of Amazon.com”, Journal of Computer Information Systems, March 7, available at: http://dx.doi.org/10.1080/08874417.2016.1275954

Li, M., Huang, L., Tan, C. and Wei, K. (2013), “Helpfulness of online product reviews as seen by consumers: source and content features”, International Journal of Electronic Commerce, Vol. 17 No. 4, pp. 101-136.

Liu, Z. and Park, S. (2015), “What makes a useful online review? Implication for travel product websites”, Tourism Management, Vol. 47, pp. 140-151.

Long, J.S. (1997), Regression Models for Categorical and Limited Dependent Variables, Sage Publications, Thousand Oaks, CA.

Loureiro, S.M.C. and Kastenholz, E. (2011), “Corporate reputation, satisfaction, delight, and loyalty towards rural lodging units in Portugal”, International Journal of Hospitality Management, Vol. 30 No. 3, pp. 575-583.

Moe, W.W. and Trusov, M. (2011), “The value of social dynamics in online product ratings forums”, Journal of Marketing Research, Vol. 48 No. 3, pp. 444-456.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Ohanian, R. (1990), “Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness”, Journal of Advertising, Vol. 19 No. 3, pp. 39-52.

Papathanassis, A. and Knolle, F. (2011), “Exploring the adoption and processing of online holiday reviews: a grounded theory approach”, Tourism Management, Vol. 32 No. 2, pp. 215-224.

Park, S. and Nicolau, J.L. (2015), “Asymmetric effects of online consumer reviews”, Annals of Tourism Research, Vol. 50, pp. 67-83.

Pavlou, P. and Gefen, D. (2004), “Building effective online marketplaces with institution-based trust”, Information Systems Research, Vol. 15 No. 1, pp. 37-59.

Pentina, I., Bailey, A.A. and Zhang, L. (2018), “Exploring effects of source similarity, message valence, and receiver regulatory focus on Yelp review persuasiveness and purchase intentions”, Journal of Marketing Communications, Vol. 24 No. 2, pp. 125-145, available at: http://dx.doi.org/10.1080/13527266.2015.1005115

Reichelt, J., Sievert, J. and Jacob, F. (2014), “How credibility affects eWOM reading: the influences of expertise, trustworthiness, and similarity on utilitarian and social functions”, Journal of Marketing Communications, Vol. 20 Nos 1-2, pp. 65-81.

Shih, H.P., Lai, K.H. and Cheng, T.C.E. (2013), “Informational and relational influences on electronic word-of-mouth: an empirical study of an online consumer discussion forum”, International Journal of Electronic Commerce, Vol. 17 No. 4, pp. 137-166.

Wei, W., Miao, L. and Huang, Z.J. (2013), “Customer engagement behaviors and hotel responses”, International Journal of Hospitality Management, Vol. 33, pp. 316-330.

Willemsen, L.M., Neijens, P.C., Bronner, F. and de Ridder, J.A. (2011), “‘Highly recommended!’ The content characteristics and perceived usefulness of online consumer reviews”, Journal of Computer-Mediated Communication, Vol. 17 No. 1, pp. 19-38.

Yacouel, N. and Fleischer, A. (2011), “The role of cybermediaries in reputation building and price premiums in the online hotel market”, Journal of Travel Research, Vol. 50 No. 1, pp. 1-8.

Yang, S.-B., Hlee, S., Lee, J. and Koo, C. (2017), “An empirical examination of online restaurant reviews on Yelp.com: a dual coding theory perspective”, International Journal of Contemporary Hospitality Management, Vol. 29 No. 2, pp. 817-839.

Roles of negative emotions in customers’ perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach

Lee M, Jeong M, Lee J, (2017), Roles of negative emotions in customers’ perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach, International Journal of Contemporary Hospitality Management, Vol.29.

Mots-clefs : avis en ligne, émotions, émotions négatives, crédibilité, intensité négative, utilité, prise de décision des consommateurs.

Résumé : Cet article a pour but de définir l’utilité des émotions négatives dans les avis en ligne et leur impact. L’étude se base ainsi sur des données empiriques et une méthodologie exploratoire dans le contexte de l’hôtellerie. Avec le web 2.0 les avis et commentaires en ligne sont devenus une source majeure d’évaluation aiguillant le consommateur. Nous apprenons dans cet écrit que selon une enquête eMarketer de 2014 que 79% des consommateurs lisent les avis avant un achat et que ceux-ci influencent leur décision.

Selon l’article et des études antérieures, les avis sont influencés par de nombreuses caractéristiques : les informations descriptives de l’identité, le sexe et l’expertise (Forman et al., 2008 ; Lee et al., 2011), le style et la qualité des avis (Jensen et al., 2013 ; Li et al., 2013) et les notes des avis (Mudambi et Schuff, 2010).

Les avis négatifs sont reconnus comme plus influents que les avis positifs : 80% des consommateurs ont changé d’avis sur un produit suite à des avis négatifs (eMarketer 2011).

Cependant les auteurs définissent que l’anonymat des avis en ligne permet d’exprimer plus facilement ses émotions, notamment négatives. L’étude démontrera que les avis négatifs se sont montrés plus utiles que les avis positifs. “Ils estiment que les avis négatifs, par rapport aux avis positifs, sont plus perspicaces, plus diagnostiques et plus utiles pour prendre des décisions éclairées et meilleures”. L’article démontre également que plus l’émotion négative est importante et exprimée, moins l’avis est considéré comme utile. Il ya donc un degrés d’importance de l’émotion, le contenu et sa crédibilité sont analysés par le consommateur.

Cependant une étude de Ammon (2015) indique que les mauvais commentaires donnent plus de crédibilité aux bons commentaires avec une apparence plus honnête et offrent directement de la crédibilité, dans ce cas, aux hôtels.

Conclusion : Cette étude a prouvé que les évaluations négatives avaient leur importance tout comme le niveau et/ou degrés d’émotion exprimé dans un commentaire. Les consommateurs accordent plus d’importance et de crédibilité aux avis négatifs et trouvent même étrange si il n’y a que des effets positifs. “Selon Ammon (2015), des études réalisées par Reevoo, un site d’évaluation des clients, indiquent que 95 % des consommateurs sont méfiants à l’égard des évaluations sur les sites d’évaluation générés par les utilisateurs lorsqu’il n’y a pas de mauvais résultats”.
Cependant l’étude définie également qu’un avis trop négatif perd de la valeur, plus il y a d’expressions émotionnelles moins le commentaire est considéré crédible. L’intensité négative des expressions émotionnelles est un élément essentiel du jugement et de la crédibilité des avis en ligne et produits eux mêmes.

Sources :

Ammon, T. (2015), “Why negative reviews are still a big ecommerce win

Aral, S., Dellarocas, C. and Godes, D. (2013), “Social media and business transformation: a framework for research”, Information Systems Research, Vol. 24 No. 1, pp. 3-13.

Baccianella, S., Esuli, A. and Sebastiani, F. (2010), “SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining”, LREC, pp. 2200-2204.

Bagozzi, R.P., Gopinath, M. and Nyer, P.U. (1999), “The role of emotions in marketing”, Journal of the Academy of Marketing Science, Vol. 27 No. 2, pp. 184-206.

Berezina, K., Bilgihan, A., Cobanoglu, C. and Okumus, F. (2015), “Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews”, Journal of Hospitality Marketing & Management, Vol. 24. No. 1, pp. 1-24.

Bickart, B. and Schindler, R.M. (2001), “Internet forums as influential sources of consumer information”, Journal of Interactive Marketing, Vol. 15 No. 3, pp. 31-40.

Browning, V., So, K. and Sparks, B. (2013), “The influence of online reviews on consumers’ attributions of service quality and control for service standards in hotels”, Journal of Travel & Tourism Marketing, Vol. 30 No. 1-2, pp. 23-40.

Cameron, A.C. and Trivedi, P.K. (2010), Microeconometrics using Stata, Stata Press, College Station, TX.

Cao, Q., Duan, W. and Gan, Q. (2011), “Exploring determinants of voting for the ‘helpfulness’ of online user reviews: a text mining approach”, Decision Support Systems, Vol. 50 No. 2, pp. 511-521.

Chatterjee, P. (2001), “Online reviews: do consumers use them?”, Advances in Consumer Research, Vol. 28, pp. 129-133.

Chevalier, J.A. and Mayzlin, D. (2006), “The effect of word of mouth on sales: online book reviews”, Journal of Marketing Research, Vol. 43 No. 3, pp. 345-354.

Connors, L., Mudambi, S.M. and Schuff, D. (2011), “Is it the review or the reviewer? A multi-method approach to determine the antecedents of online review helpfulness”, 44th Hawaii International Conference on System Sciences, pp. 1-10.

De Albornoz, J.C., Plaza, L. and Gervas, P. (2012), “Sentisense: an easily scalable concept based affective lexicon for sentiment analysis”, Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), pp. 3562-3567.

Dellarocas, C. (2003), “The digitization of word of mouth: promise and challenges of online feedback mechanisms”, Management Science, Vol. 49 No. 10, pp. 1407-1424.

Derks, D., Fischer, A.H. and Bos, A.E.R. (2008), “The role of emotion in computer-mediated communication: a review”, Computers in Human Behavior, Vol. 24 No. 3, pp. 766-785.

Diefendorff, J.M. and Richard, E.M. (2003), “Antecedents and consequences of emotional display rule perceptions”, Journal of Applied Psychology, Vol. 88 No. 2, pp. 284-294.

Duan, W., Gu, B. and Whinston, A.B. (2008), “Do online reviews matter? An empirical investigation of panel data”, Decision Support Systems, Vol. 45 No. 4, pp. 1007-1016.

Ekman, P. (1973), Darwin and Facial Expression: A Century of Research in Review, Malor Books.

eMarketer (2011), “Negative buzz gains traction among Web users”, 

eMarketer (2014), “Online reviewers lean toward good, mixed feedback over negative”,

Esuli, A. and Sebastiani, F. (2006), “Sentiwordnet: a publicly available lexical resource for opinion mining”, Proceedings of LREC, CiteSeer, pp. 417-422.

Fang, B., Ye, Q., Kucukusta, D. and Law, R. (2016), “Analysis of the perceived value of online tourism reviews: influence of readability and reviewer characteristics”, Tourism Management, Vol. 52, pp. 498-506.

Fiske, S.T. (1980), “Attention and weight in person perception: the impact of negative and extreme behavior”, Journal of Personality and Social Psychology, Vol. 38 No. 6, pp. 889-906.

Folkes, V.S. (1988), “Recent attribution research in consumer behavior: a review and new directions”, Journal of Consumer Research, Vol. 14 No. 4, pp. 548-565.

Forman, C., Ghose, A. and Wiesenfeld, B. (2008), “Examining the relationship between reviews and sales: the role of reviewer identity disclosure in electronic markets”, Information Systems Research, Vol. 19 No. 3, pp. 291-313.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010), Multivariate Data Analysis: A Global Perspective, 7th ed., Pearson Prentice Hall, Upper Saddle River, NJ.

Hamilton, R., Vohs, K.D. and McGill, A.L. (2014), “We’ll be honest, this won’t be the best article you’ll ever read: the use of dispreferred markers in word-of-mouth communication”, Journal of Consumer Research, Vol. 41 No. 1, pp. 197-212.

Hernández-Méndez, J., Muñoz-Leiva, F. and Sánchez-Fernández, J. (2015), “The influence of e-word-of-mouth on travel decision-making: consumer profiles”, Current Issues in Tourism, Vol. 18 No. 11, pp. 1001-1021.

Howard, D.J. and Gengler, C. (2001), “Emotional contagion effects on product attitudes”, Journal of Consumer Research, Vol. 28 No. 2, pp. 189-201.

Jensen, M.L., Averbeck, J.M., Zhang, Z. and Wright, K.B. (2013), “Credibility of anonymous online product reviews: a language expectancy perspective”, Journal of Management Information Systems, Vol. 30 No. 1, pp. 293-324.

Jeong, M. and Jeon, M.M. (2008), “Customer reviews of hotel experiences through consumer generated media (CGM)”, Journal of Hospitality & Leisure Marketing, Vol. 17 Nos 1/2, pp. 121-138.

Jiang, Z.H. and Benbasat, I. (2007), “Investigating the influence of the functional mechanisms of online product presentations”, Information Systems Research, Vol. 18 No. 4, pp. 454-470.

Kahneman, D. and Tversky, A. (1979), “Prospect theory: an analysis of decision under risk”, Econometrica, Vol. 47 No. 2, pp. 263-291.

Kiesler, S., Siegel, J. and McGuire, T.W. (1984), “Social psychological aspects of computer-mediated communication”, American Psychologist, Vol. 39 No. 10, pp. 1123-1134.

Kim, J. and Gupta, P. (2012), “Emotional expressions in online user reviews: how they influence consumers’ product evaluations”, Journal of Business Research, Vol. 65 No. 7, pp. 985-992.

King, R.A., Racherla, P. and Bush, V.D. (2014), “What we know and don’t know about online word-of-mouth: a review and synthesis of the literature”, Journal of Interactive Marketing, Vol. 28 No. 3, pp. 167-183.

Krishna, A., Dangayach, G. and Sharma, S. (2014), “Service recovery paradox: the success parameters”, Global Business Review, Vol. 15 No. 2, pp. 263-277.

Kusumasondjaja, S., Shanka, T. and Marchegiani, C. (2012), “Credibility of online reviews and initial trust: the roles of reviewer’s identify and review valence”, Journal of Vacation Marketing, Vol. 18 No. 3, pp. 185-195.

La, S. and Choi, B. (2012), “The role of customer affection and trust in loyalty rebuilding after service failure and recovery”, The Service Industries Journal, Vol. 32 No. 1, pp. 105-125.

Lee, H.A., Law, R. and Murphy, J. (2011), “Helpful reviewers in TripAdvisor, an online travel community”, Journal of Travel & Tourism Marketing, Vol. 28 No. 7, pp. 675-688.

Lee, J., Park, D.H. and Han, I. (2008), “The effect of negative online consumer reviews on product attitude: an information processing view”, Electronic Commerce Research and Applications, Vol. 7 No. 3, pp. 341-352.

Lerner, J.S. and Keltner, D. (2000), “Beyond valence: toward a model of emotion-specific influences on judgment and choice”, Cognition & Emotion, Vol. 14 No. 4, pp. 473-493.

Li, M., Huang, L., Tan, C.H. and Wei, K.K. (2013), “Helpfulness of online product reviews as seen by consumers: source and content features”, International Journal of Electronic Commerce, Vol. 17 No. 4, pp. 101-136.

Liu, Y. (2006), “Word of mouth for movies: its dynamics and impact on box office revenue”, Journal of Marketing, Vol. 70 No. 3, pp. 74-89.

Lu, W. and Stepchenkova, S. (2015), “User-generated content as a research mode in tourism and hospitality applications: topics, methods, and software”, Journal of Hospitality Marketing & Management, Vol. 24 No. 2, pp. 119-154.

Maheswaran, D. and Meyers-Levy, J. (1990), “The influence of message framing and issue involvement”, Journal of Marketing Research, Vol. 27 No. 3, pp. 361-367.

Mattsson, J., Lemmink, J. and McColl, R. (2004), “The effect of verbalized emotions on loyalty in written complaints”, Total Quality Management & Business Excellence, Vol. 15 No. 7, pp. 941-958.

Mauri, A.G. and Minazzi, R. (2013), “Web reviews influence on expectations and purchasing intentions of hotel potential customers”, International Journal of Hospitality Management, Vol. 34, pp. 99-107.

Melian-Gonzalez, S., Bulchand-Gidumal, J. and Gonzalez Lopez-Valcarcel, B. (2013), “Online customer reviews of hotels: as participation increases, better evaluation is obtained”, Cornell Hospitality Quarterly, Vol. 54 No. 3, pp. 274-283.

Morris, M.W. and Keltner, D. (2000), “How emotions work: the social functions of emotional expression in negotiations”, Research in Organizational Behavior, Vol. 22, pp. 1-50.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Nicosia, F. (1966), Consumer Decision Processes, Prentice Hall, Englewood Cliffs, NJ.

Nyer, P.U. (2000), “An investigation into whether complaining can cause increased consumer satisfaction”, Journal of Consumer Marketing, Vol. 17 No. 1, pp. 9-19.

Pang, B. and Lee, L. (2008), “Opinion mining and sentiment analysis”, Foundations and Trends in Information Retrieval, Vol. 2 Nos 1/2, pp. 1-135.

Park, D.H. and Kim, S. (2008), “The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews”, Electronic Commerce Research and Applications, Vol. 7 No. 4, pp. 399-410.

Park, H., Xiang, Z., Josiam, B. and Kim, H. (2014), “Personal profile information as cues of credibility in online travel reviews”, Anatolia, Vol. 25 No. 1, pp. 13-23.

Pavlou, P. and Dimoka, A. (2006), “The nature and role of feedback text comments in online marketplaces: implications for trust building, price premiums, and seller differentiation”, Information Systems Research, Vol. 17 No. 4, pp. 392-414.

Pennebaker, J.W., Booth, R.J. and Francis, M.E. (2007), Linguistic Inquiry and Word Count (LIWC2007), Austin, TX,

Rafaeli, A. and Sutton, R.I. (1991), “Emotional contrast strategies as means of social influence: lessons from criminal interrogators and bill collectors”, Academy of Management Journal, Vol. 34 No. 4, pp. 749-775.

Rice, R.E. and Love, G. (1987), “Electronic emotion socio emotional content in a computer-mediated communication network”, Communication Research, Vol. 14 No. 1, pp. 85-108.

Rozin, P. and Royzman, E.B. (2001), “Negativity bias, negativity dominance, and contagion”, Personality and Social Psychology Review, Vol. 5 No. 4, pp. 296-320.

Schuckert, M., Liu, X. and Law, R. (2015), “Hospitality and tourism online reviews: recent trends and future directions”, Journal of Travel & Tourism Marketing, Vol. 32 No. 5, pp. 608-621.

Schwarz, N. (2000), “Emotion, cognition, and decision making”, Cognition & Emotion, Vol. 14 No. 4, pp. 433-440.

Serra Cantallops, A. and Salvi, F. (2014), “New consumer behavior: a review of research on eWOM and hotels”, International Journal of Hospitality Management, Vol. 36, pp. 41-51.

Sparks, B.A. and Browning, V. (2011), “The impact of online reviews on hotel booking intentions and perception of trust”, Tourism Management, Vol. 32 No. 6, pp. 1310-1323.

Tronvoll, B. (2011), “Negative emotions and their effect on customer complaint behaviour”, Journal of Service Management, Vol. 22 No. 1, pp. 111-134.

Tsao, W.C., Hsieh, M.T., Shih, L.W. and Lin, T.M. (2015), “Compliance with eWOM: the influence of hotel reviews on booking intention from the perspective of consumer conformity”, International Journal of Hospitality Management, Vol. 46, pp. 99-111.

Vermeulen, I.E. and Seegers, D. (2009), “Tried and tested: the impact of online hotel reviews on consumer consideration”, Tourism Management, Vol. 30 No. 1, pp. 123-127.

Xie, H., Miao, L., Kuo, P.J. and Lee, B.Y. (2011), “Consumers’ responses to ambivalent online hotel reviews: the role of perceived source credibility and pre-decisional disposition”, International Journal of Hospitality Management, Vol. 30 No. 1, pp. 178-183.

Ye, Q., Law, R. and Gu, B. (2009), “The impact of online user reviews on hotel room sales”, International Journal of Hospitality Management, Vol. 28, pp. 180-182.

Ye, Q., Law, R., Gu, B. and Chen, W. (2011), “The influence of user-generated content on traveler behavior: an empirical investigation on the effects of e-word-of-mouth to hotel online bookings”, Computers in Human Behavior, Vol. 27 No. 2, pp. 634-639.

Ye, Q., Li, H., Wang, Z. and Law, R. (2014), “The influence of hotel price on perceived service quality and value in e-tourism: an empirical investigation based on online traveler reviews. Journal of Hospitality & Tourism Research, Vol. 38 No. 1, pp. 23-39.

Yin, D., Bond, S. and Zhang, H. (2014), “Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews”, MIS Quarterly, Vol. 38 No. 2, pp. 539-560.

Yoo, K.H. and Gretzel, U. (2008), “What motivates consumers to write online travel reviews?”, Information Technology & Tourism, Vol. 10 No. 4, pp. 283-295.

Zhu, F. and Zhang, X. (2010), “Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics”, Journal of Marketing, Vol. 74 No. 2, pp. 133-148.

Zhu, L., Yin, G. and He, W. (2014), “Is this opinion leader’s review useful? Peripheral cues for online reivew helpfulness”, Journal of Electronic Commerce Research, Vol. 15 No. 4, pp. 267-280

Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions

Mirtalaie M, Hussain O, Chang E, Hussain F, (2018), Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions, Expert Systems with Applications, Volume 114, 30 December 2018, Pages 267-288

https://www.sciencedirect.com/science/article/abs/pii/S0957417418304718

Mots clés : Analyse des sentiments basé sur les fonctionnalités, Avantages / inconvénients des produits,Force de polarité, Arborescence des produits

Résumé : L’extraction des connaissances sur les sentiments est un domaine de recherche en croissance dans la littérature. Il aide à analyser les opinions des utilisateurs sur différentes entités ou événements, qui peuvent ensuite être utilisées par les analystes à diverses fins. En particulier, l’analyse des sentiments basée sur les fonctionnalités est l’un des domaines de recherche difficiles qui analyse les opinions des utilisateurs sur les différentes fonctionnalités d’un produit ou d’un service. Parmi les trois formats pour les évaluations de produits, notre objectif dans cet article se limite à l’analyse du type avantages / inconvénients. En raison de la nature des avis pour / contre, ils sont généralement concis et suivent une structure différente des autres types d’avis. Par conséquent, des techniques spécialisées sont nécessaires pour analyser ces avis et extraire les caractéristiques des produits discutés par les clients ainsi que leurs attitudes personnelles

Grandes lignes :

  • Extraction de fonctionnalités à l’aide de règles syntaxique à partir des avis pour / contre.
  • Déterminer la polarité de l’opinion en fonction de sa force émotionnelle.
  • Comparer les résultats avec des approches de pointe dans différentes tâches.


Agarwal, B., Mittal, N., Bansal, P., & Garg, S. (2015). Sentiment analysis using
common-sense and context information. Computational Intelligence and Neuroscience, 2015, 9 Article ID 715730. doi:10.1155/2015/715730.
Agrawal, S., & Siddiqui, T. J. (2009). Using syntactic and contextual information for
sentiment polarity analysis. In Proceedings of the 2nd international conference on
interaction sciences information technology, culture and human – ICIS ’09 (pp. 620–
623). doi:10.1145/1655925.1656037.
Alghunaim, A., Mohtarami, M., Cyphers, S., & Glass, J. (2015). A vector space approach for aspect based sentiment analysis. In In Proceedings of NAACL-HLT
(pp. 116–122).
Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing
deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236–246. doi:10.1016/j.eswa.2017.02.
002.
Bagheri, A., Saraee, M., & De Jong, F. (2013). Care more about customers: Unsupervised domain-independent aspect detection for sentiment analysis of customer reviews. Knowledge-Based Systems, 52, 201–213. doi:10.1016/j.knosys.2013.
08.011.
Benamara, F., Irit, S., Cesarano, C., Federico, N., & Reforgiato, D. (2007).
Sentiment analysis : Adjectives and adverbs are better than adjectives
alone. In In Proc of int conf on weblogs and social media (pp. 1–4).
http://doi.org/citeulike-article-id:9387439.
Bhattacharjee, S., Das, A., Bhattacharya, U., Parui, S. K., & Roy, S. (2015). Sentiment
analysis using cosine similarity measure. In IEEE 2nd international conference on
Recent Trends in Information Systems (ReTIS) (pp. 27–32). doi:10.1109/ReTIS.2015.
7232847.
Bright, D. A. (2017). Using social network analysis to design crime prevention
strategies: A case study of methamphetamine manufacture and trafficking. In
B. LeClerc, & E. U. Savona (Eds.), Crime prevention in the 21st century: Insightful
approaches for crime prevention initiatives (pp. 143–164). Cham: Springer International Publishing. doi:10.1007/978-3-319-27793-6_11.
Cambria, E., Poria, S., Gelbukh, A., & Nacional, I. P. (2017). Sentiment analysis is a
big suitcase. IEEE Intelligent Systems, 74–80. doi:10.1109/MIS.2017.4531228.
Carenini, G., Ng, R. T., & Zwart, E. (2005). Extracting knowledge from evaluative text.
In K-CAP ’05: Proceedings of the 3rd international conference on Knowledge capture
(pp. 11–18). doi:10.1145/1088622.1088626.
Carter, D., & Inkpen, D. (2015). Inferring aspect-specific opinion structure in product reviews using co-training. In 16th international conference in computational linguistics and intelligent text processing: 9042 (pp. 225–240). doi:10.1007/
978-3-642-28601-8.
Chen, D., & Manning, C. (2014). A Fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 740–750). doi:10.3115/v1/D14-1082.
Chen, Y. Y., Ferrer, X., Wiratunga, N., & Plaza, E. (2015). Aspect selection for social
recommender systems. In E. Hüllermeier, & M. Minor (Eds.). In Case-based reasoning research and development. ICCBR 2015. Lecture Notes in Computer Science:

  1. Cham: Springer.
    Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of
    Big Data, 2, 5. doi:10.1186/s40537-015-0015-2.
    Ganapathibhotla, M., & Liu, B. (2008). Mining opinions in comparative sentences.
    In Proceedings of the 22nd international conference on computational linguistics –
    COLING ’08 (pp. 241–248). 1(August). doi:10.3115/1599081.1599112.
    Ganeshbhai, S. Y., & Shah, B. K. (2015). Feature based opinion mining: A survey. In
    Souvenir of the 2015 IEEE international advance computing conference, IACC 2015
    (pp. 919–923). doi:10.1109/IADCC.2015.7154839.
    García-Pablos, A., Cuadros, M., & Rigau, G. (2015). Unsupervised word polarity tagging by exploiting continuous word representations. Procesamiento de Lenguaje
    Natural, 55, 127–134.
    Goldberg, A. B., Fillmore, N., Andrzejewski, D., Xu, Z., Gibson, B., & Zhu, X. (2009).
    May all your wishes come true : A study of wishes and how to recognize them.
    In Proceedings of human language technologies: The 2009 annual conference of the
    north american chapter of the association for computational linguistics on – NAACL
    ’09 (pp. 263–271). doi:10.3115/1620754.1620793.
    Hogenboom, A., Van Iterson, P., Heerschop, B., Frasincar, F., & Kaymak, U. (2011).
    Determining negation scope and strength in sentiment analysis. In Conference proceedings – IEEE international conference on systems, man and cybernetics
    (pp. 2589–2594). doi:10.1109/ICSMC.2011.6084066.
    Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. In 19th
    national conference on artifical intelligence (pp. 755–760). doi:10.1145/1014052.
    1014073.
    Huang, J., Etzioni, O., Zettlemoyer, L., Clark, K., & Lee, C. (2012). Revminer: An extractive interface for navigating reviews on a smartphone. In Proceedings of the
    25th annual ACM symposium on user interface software and technology (pp. 3–12).
    doi:10.1145/2380116.2380120.
    Jeyapriya, A., & Selvi, C. S. K. (2015). Extracting aspects and mining opinions in product reviews using supervised learning algorithm. In 2nd international conference on electronics and communication systems, ICECS 2015 (pp. 548–552). IEEE.
    doi:10.1109/ecs.2015.7124967.
    Jhamtani, H., Chhaya, N., Karwa, S., Varshney, D., Kedia, D., & Gupta, V. (2015). Identifying suggestions for improvement of product features from online product reviews. In T.-Y. Liu, C. N. Scollon, & W. Zhu (Eds.), Social informatics (pp. 112–119).
    Switzerland: Cham: Springer International Publishing.
    Kang, Y., & Zhou, L. (2016). RubE: Rule-based methods for extracting product features from online consumer reviews. Information & Management, 54(2). doi:10.
    1016/j.im.2016.05.007.
    Kim, S.-M., & Hovy, E. (2006). Automatic identification of pro and con reasons in online reviews. In Proceedings of the COLING/ACL on main conference poster sessions
    (pp. 483–490). doi:10.3115/1273073.1273136.
    Lau, R. Y. K., Li, C., & Liao, S. S. Y. (2014). Social analytics: Learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decision Support Systems,
    65(2014), 80–94. doi:10.1016/j.dss.2014.05.005.
    Li, Y. M., Chen, H. M., Liou, J. H., & Lin, L. F. (2014). Creating social intelligence for
    product portfolio design. Decision Support Systems, 66, 123–134. doi:10.1016/j.
    dss.2014.06.013.
    Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers.
    doi:10.2200/S00416ED1V01Y201204HLT016.
    Liu, B. (2015). Sentiment analysis: mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139084789.
    Liu, B., & Hu, M. (2005). Opinion observer: analyzing and comparing opinions on
    the web. In Proceedings of the 14th international World Wide Web conference
    (WWW-2005).
    Liu, J., & Seneff, S. (2009). Review sentiment scoring via a parse-and-paraphrase
    paradigm. In Proceedings of the 2009 conference on empirical methods in natural language processing volume 1 – EMNLP ’09: 1 (p. 161). doi:10.3115/1699510.
    1699532.
    Liu, Q., Gao, Z., Liu, B., & Zhang, Y. (2015). Automated rule selection for aspect extraction in opinion mining. In Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) (pp. 1291–1297).
    Lobeck, A. C. (2000). Discovering grammar: An introduction to english sentence structure. Oxford University Press.
    Manek, A. S., Shenoy, P. D., Mohan, M. C., & Venugopal, K. R. (2016). Aspect
    term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web. doi:10.1007/
    s11280-015-0381-x.
    Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).
    The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd
    annual meeting of the association for computational linguistics: system demonstrations (pp. 55–60). doi:10.3115/v1/P14-5010.
    Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the
    ACM, 38(11), 39–41.
    Mirtalaie, M. A., Hussain, O. K., & Chang, E. (2016). FEATURE : New product development using feature- drift based framework for unique aspect recommendation.
    IEEE international conference on e-business engineering. doi:10.1109/ICEBE.2016.
    43.
    Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2017a). A decision support framework for identifying novel ideas in new product development from
    cross-domain analysis. Information Systems, 69, 59–80. doi:10.1016/j.is.2017.04.
    003.
    Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2017b). Sentiment analysis of specific product’s features using product tree for application in new product development. In Advances in Intelligent Networking and Collaborative Systems
    (INCoS 2017) (pp. 82–95). Springer.
    Mukherjee, S., & Joshi, S. (2013). Sentiment aggregation using conceptnet ontology. In Proceedings of the sixth international joint conference on natural language processing (pp. 570–578). (October)Retrieved from. http://www.aclweb.
    org/anthology/I13-1065 .
    Nielsen, F. A. ˚ (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In CEUR workshop proceedings: 718 (pp. 93–98). doi:10.1016/j.
    knosys.2015.06.015.
    Norman, B., & Ann, M. J. (2011). Mapping and leveraging influencers in social media to shape corporate brand perceptions. Corporate Communications: An International Journal, 16(3), 184–191. doi:10.1108/13563281111156853.
    Pasierbinska-Wilson, Z.. Will social data insights kill the marketing focus group?
    Retrieved 2 February 2018, from https://www.martechadvisor.com/articles/
    bi-ci-amp-data-visualization/will-social-data-insights-kill-the-marketing-focus
    -group/.
    Poria, S., Cambria, E., Ku, L.-W., Gui, C., & Gelbukh, A. (2014). A rule-based approach
    to aspect extraction from product reviews. Workshop on Natural Language Processing for Social Media (SocialNLP), 28–37.
    Qiu, G., Liu, B., Bu, J., & Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37, 9–27. doi:10.
    1162/coli_a_00034.
    Ramanand, J., Bhavsar, K., & Pedanekar, N. (2010). Wishful thinking – Finding suggestions and “buy” wishes from product reviews. In Proceedings of the NAACL HLT
    2010 workshop on computational approaches to analysis and generation of emotion
    in text (pp. 54–61).
    Rana, T. A., & Cheah, Y. N. (2017). A two-fold rule-based model for aspect extraction.
    Expert Systems with Applications, 89, 273–285. doi:10.1016/j.eswa.2017.07.047.
    288 M.A. Mirtalaie et al. / Expert Systems With Applications 114 (2018) 267–288
    Samha, A. K., Li, Y., & Zhang, J. (2015). Aspect – Based opinion mining from product
    reviews using conditional random fields. AusDM 2015: The 13th Australasian Data
    Mining Conference. University of Technology.
    Schouten, K., & Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE
    Transactions on Knowledge and Data Engineering, 28(3), 813–830. doi:10.1109/
    TKDE.2015.2485209.
    Suleman, K., & Vechtomova, O. (2015). Discovering aspects of online consumer reviews. Journal of Information Science, 1–15. doi:10.1177/0165551515595742.
    Thelwall, M. (2013). Heart and soul: Sentiment strength detection in the social
    web with sentistrength. Proceedings of the CyberEmotions, 5, 1–14. doi:10.1007/
    978-3-319-43639-5_7.
    Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich partof-speech tagging with a cyclic dependency network. In Proceedings of the
    2003 conference of the North American chapter of the association for computational linguistics on human language technology – NAACL ’03: 1 (pp. 173–180).
    doi:10.3115/1073445.1073478.
    Wang, H., & Wang, W. (2014). Product weakness finder: An opinion-aware
    system through sentiment analysis. Industrial Management & Data Systems,
    114(8), 1301–1320. Retrieved from http://www.emeraldinsight.com/doi/pdfplus/
    10.1108/IMDS-02-2014-0069 .
    Wang, Z., & Bovik, A. C. (2009). Mean squared error: Lot it or leave it? A new look at
    signal fidelity measures. IEEE Signal Processing Magazine, 26(1), 98–117. doi:10.
    1109/MSP.2008.930649.
    Xie, Y., Chen, Z., Cheng, Y., Zhang, K., Agrawal, A., Liao, W.-K., & Choudhary, A. (2013). Detecting and tracking disease outbreaks by mining social media data. In Proceedings of the twenty-third international joint conference on artificial intelligence. AAAI Press.
    Ye, K., Li, L., Guo, M., Qian, Y., & Yuan, H. (2015). Summarizing product aspects from
    massive online review with word representation. Knowledge Science Engineering
    Management, 9403(71572029), 318–323. doi:10.1007/978-3-319-25159-2.
    Yu, J., Zha, Z.-J., Wang, M., & Chua, T.-S. (2011). Aspect ranking: Identifying important product aspects from online consumer reviews. In Proceedings of the 49th
    annual meeting of the association for computational linguistics (pp. 1496–1505).
    doi:10.1109/CC.2013.6488828.
    Zhao, B., Rubinstein, B. I. P., Gemmell, J., & Han, J. (2012). A Bayesian approach to
    discovering truth from conflicting sources for data integration. Vldb, 5(6), 550–
  2. doi:10.14778/2168651.2168656.
    Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. In
    Proceedings of the 15th ACM International conference on information and knowledge management – CIKM ’06 43. doi:10.1145/1183614.1183625

Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products

Sun X, Han M, Feng J, (2019), Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products, Decision Support Systems, Volume 124, September 2019, 113099

https://www.sciencedirect.com/science/article/pii/S0167923619301289

Mots clés : Avis en ligne, Recherche de produits, Découverte de produits, Prédiction de l’utilité

Résumé : La surcharge d’informations rend souvent difficile pour les consommateurs d’identifier les avis de produits en ligne utiles grâce à la fonction traditionnelle de « votes utiles»; par conséquent, il est devenu particulièrement important d’identifier efficacement les avis utiles. En différenciant les produits de recherche des produits d’expérience, cette recherche examine l’impact de différentes mesures de l’information communiquée par les avis sur l’utilité des avis et propose différents seuils de classification pour identifier individuellement l’utilité des avis en ligne pour les produits de recherche et pour les produits d’expérience, respectivement. Toutes les expériences ont été menées à l’aide d’un ensemble de données de JD.com, l’un des plus grands marchés électroniques en ligne en Chine. Nos résultats offrent des lignes directrices pour concevoir différentes normes de classification de l’utilité pour les produits de recherche et pour les produits d’expérience.

Grandes lignes :

  • Les différences entre les produits de recherche et les produits d’expérience modèrent la perception des consommateurs quant à l’utilité des avis.
  • Nous confirmons différents seuils de classification pour les produits de recherche et d’expérience.
  • Amélioration des performances de classification grâce à nos variables et seuils proposés
  • Le nombre d’attributs et la longueur moyenne des attributs mesurent le caractère informatif de l’examen.


[1] N. Archak, A. Ghose, P.G. Ipeirotis, Deriving the pricing power of product features
by mining consumer reviews, Management Science 57 (8) (2011) 1485–1509.
[2] L. Baruh, Z. Cemalcılar, When more is more? The impact of breadth and depth of
information disclosure on attributional confidence about and interpersonal attraction to a social network site profile owner, Cyberpsychology: Journal of
Psychosocial Research on Cyberspace 12 (1) (2018).
[3] A. Benlian, R. Titah, T. Hess, Differential effects of provider recommendations and
consumer reviews in e-commerce transactions: an experimental study, Journal of
Management Information Systems 29 (1) (2012) 237–272.
[4] L.A. Book, S. Tanford, W. Chang, Customer reviews are not always informative: the
impact of effortful versus heuristic processing, Journal of Retailing and Consumer
Services 41 (2018) 272–280.
[5] Q. Cao, W. Duan, Q. Gan, Exploring determinants of voting for the “helpfulness” of
online user reviews: a text mining approach, Decision Support Systems 50 (2)
(2011) 511–521.
[6] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning
algorithms using different performance metrics, Proc. 23rd International
Conference Machine Learning (ICML ’06), 2006, pp. 161–168.
[7] Y. Chi, X. Tang, Y. Lian, X. Dong, Y. Liu, A supernetwork-based online post informative quality evaluation model, Knowledge-Based Systems 168 (2019) 10–24.
[8] A.Y.K. Chua, S. Banerjee, Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth, Journal of the Association for
Information Science and Technology 66 (2) (2015) 354–362.
[9] A.Y.K. Chua, S. Banerjee, Helpfulness of user-generated reviews as a function of
review sentiment, product type and information quality, Computers in Human
Behavior 54 (2016) 547–554.
[10] S.P. Eslami, M. Ghasemaghaei, K. Hassanein, Which online reviews do consumers
find most helpful? A multi-method investigation, Decision Support Systems 113
(2018) 32–42.
[11] R. Filieri, What makes online reviews helpful? A diagnosticity-adoption framework
to explain informational and normative influences in e-WOM, Journal of Business
Research 68 (6) (2015) 1261–1270.
[12] R. Filieri, F. McLeay, B. Tsui, Z. Lin, Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services, Information & Management 55 (2018) 956–970.
[13] B.J. Fogg, J. Marshall, O. Laraki, A. Osipovich, C. Varma, N. Fang, J. Paul,
A. Rangnekar, J. Shon, P. Swani, M. Treinen, What makes web sites credible? A
report on a large quantitative study, Proceedings of the SIGCHI Conference on
Human Factors in Computing, 2001, pp. 61–68.
[14] C. Forman, A. Ghose, B. Wiesenfeld, Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets, Information
Systems Research 19 (3) (2008) 291–313.
[15] A. Ghose, P.G. Ipeirotis, Estimating the helpfulness and economic impact of product
reviews: mining text and reviewer characteristics, IEEE Transactions on Knowledge
and Data Engineering 23 (10) (2011) 1498–1512.
[16] T. Girard, P. Dion, Validating the search, experience, and credence product classification framework, Journal of Business Research 63 (9–10) (2010) 1079–1087.
[17] H. Hong, D. Xu, G.A. Wang, W. Fan, Understanding the determinants of online
review helpfulness: a meta-analytic investigation, Decision Support Systems 102
(2017) 1–11.
[18] Y.K. Hong, P.A. Pavlou, Product fit uncertainty in online markets: nature, effects,
and antecedents, Information Systems Research 25 (2) (2014) 328–344.
[19] Y.-H. Hu, K. Chen, Predicting hotel review helpfulness: the impact of review visibility, and interaction between hotel stars and review ratings, International Journal
of Information Management 36 (6) (2016) 929–944.
[20] A.H. Huang, K. Chen, D.C. Yen, T.P. Tran, A study of factors that contribute to
online review helpfulness, Computers in Human Behavior 48 (2015) 17–27.
[21] A.H. Huang, D.C. Yen, Predicting the helpfulness of online reviews: a replication,
International Journal of Human Computer Interaction 29 (2) (2013) 129–138.
[22] L. Huang, C.-H. Tan, W. Ke, K.-K. Wei, Comprehension and assessment of product
reviews: a review-product congruity proposition, Journal of Management
Information Systems 30 (3) (2013) 311–343.
[23] L. Huang, C.-H. Tan, W. Ke, K.-K. Wei, Do we order product review information
display? How? Information & Management 51 (7) (2014) 883–894.
[24] F.R. Jiménez, N.A. Mendoza, Too popular to ignore: the influence of online reviews
on purchase intentions of search and experience products, Journal of Interactive
Marketing 27 (3) (2013) 226–235.
[25] Q. Jones, G. Ravid, S. Rafaeli, Information overload and the message dynamics of
online interaction spaces: a theoretical model and empirical exploration,
Information Systems Research 15 (2) (2004) 194–210.
X. Sun, et al. Decision Support Systems 124 (2019) 113099
10
[26] Y. Kang, L. Zhou, RubE: rule-based methods for extracting product features from
online consumer reviews, Information & Management 54 (2) (2017) 166–176.
[27] S. Karimi, F. Wang, Online review helpfulness: impact of reviewer profile image,
Decision Support Systems 96 (2017) 39–48.
[28] N. Korfiatis, E. García-Bariocanal, S. Sánchez-Alonso, Evaluating content quality
and helpfulness of online product reviews: the interplay of review helpfulness vs.
review content, Electronic Commerce Research and Applications 11 (3) (2012)
205–217.
[29] S. Krishnamoorthy, Linguistic features for review helpfulness prediction, Expert
Systems with Applications 42 (7) (2015) 3751–3759.
[30] E.-J. Lee, S.Y. Shin, When do consumers buy online product reviews? Effects of
review quality, product type, and reviewer’s photo, Computers in Human Behavior
31 (2014) 356–366.
[31] P.-J. Lee, Y.-H. Hu, K.-T. Lu, Assessing the helpfulness of online hotel reviews: a
classification-based approach, Telematics and Informatics 35 (2) (2018) 436–445.
[32] M. Li, C.-H. Tan, K.-K. Wei, K. Wang, Sequentiality of product review information
provision: an information foraging perspective, MIS Quarterly 41 (3) (2017)
867–892.
[33] S. Liang, M. Schuckert, R. Law, How to improve the stated helpfulness of hotel
reviews? A multilevel approach, International Journal of Contemporary Hospitality
Management 31 (2) (2019) 953–977.
[34] J.-S. Lim, A. Al-Aali, J.H. Heinrichs, Impact of satisfaction with e-retailers’ touch
points on purchase behavior: the moderating effect of search and experience product type, Marketing Letters 26 (2) (2014) 225–235.
[35] X.W. Liu, M. Schuckert, R. Law, Utilitarianism and knowledge growth during status
seeking: evidence from text mining of online reviews, Tourism Management 66
(2018) 38–46.
[36] Z. Liu, S. Park, What makes a useful online review? Implication for travel product
websites, Tourism Management 47 (2015) 140–151.
[37] J. Luan, Z. Yao, F. Zhao, H. Liu, Search product and experience product online
reviews: an eye-tracking study on consumers’ review search behavior, Computers in
Human Behavior 65 (2016) 420–430.
[38] C. Luo, X. Luo, Y. Xu, M. Warkentin, C.L. Sia, Examining the moderating role of
sense of membership in online review evaluations, Information & Management 52
(3) (2015) 305–316.
[39] M. Ma, R. Agarwal, Through a glass darkly: information technology design, identity
verification, and knowledge contribution in online communities, Information
Systems Research 18 (1) (2007) 42–67.
[40] J.E. Maddux, R.W. Rogers, Effects of source expertness, physical attractiveness, and
supporting arguments on persuasion – a case of brains over beauty, Journal of
Personality and Social Psychology 39 (2) (1980) 235–244.
[41] M.S.I. Malik, A. Hussain, Helpfulness of product reviews as a function of discrete
positive and negative emotions, Computers in Human Behavior 73 (2017) 290–302.
[42] M.S.I. Malik, A. Hussain, An analysis of review content and reviewer variables that
contribute to review helpfulness, Information Processing & Management 54 (1)
(2018) 88–104.
[43] S.M. Mudambi, D. Schuff, What makes a helpful online review? A study of customer
reviews on amazon.com, MIS Quarterly 34 (1) (2010) 185–200.
[44] P. Nelson, Information and consumer behavior, Journal of Political Economy 78 (2)
(1970) 311–329.
[45] P. Nelson, Advertising as information, Journal of Political Economy 82 (4) (1974)
729–754.
[46] T.L. Ngo-Ye, A.P. Sinha, The influence of reviewer engagement characteristics on
online review helpfulness: a text regression model, Decision Support Systems 61
(2014) 47–58.
[47] T.L. Ngo-Ye, A.P. Sinha, A. Sen, Predicting the helpfulness of online reviews using a
scripts-enriched text regression model, Expert Systems with Applications 71 (2017)
98–110.
[48] P. Pendharkar, A threshold varying bisection method for cost sensitive learning in
neural networks, Expert Systems with Applications 34 (2) (2008) 1456–1464.
[49] A. Qazi, K.B. Shah Syed, R.G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, A conceptlevel approach to the analysis of online review helpfulness, Computers in Human
Behavior 58 (2016) 75–81.
[50] J. Qi, Z. Zhang, S. Jeon, Y. Zhou, Mining customer requirements from online reviews: a product improvement perspective, Information & Management 53 (8)
(2016) 951–963.
[51] P. Racherla, W. Friske, Perceived ‘usefulness’ of online consumer reviews: an exploratory investigation across three services categories, Electronic Commerce
Research and Applications 11 (6) (2012) 548–559.
[52] M. Salehan, D.J. Kim, Predicting the performance of online consumer reviews: a
sentiment mining approach to big data analytics, Decision Support Systems 81
(2016) 30–40.
[53] X.-F. Shao, Free or calculated shipping: impact of delivery cost on supply chains
moving to online retailing, International Journal of Production Economics 191
(2017) 267–277.
[54] M. Siering, J. Muntermann, B. Rajagopalan, Explaining and predicting online review helpfulness: the role of content and reviewer-related signals, Decision Support
Systems 108 (2018) 1–12.
[55] A. Singh, C.S. Tucker, A machine learning approach to product review disambiguation based on function, form and behavior classification, Decision Support
Systems 97 (2017) 81–91.
[56] A.S. Singh, C.S. Tucker, Investigating the heterogeneity of product feature preferences mined using online product data streams, ASME 2015 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2015.
[57] J.P. Singh, S. Irani, N.P. Rana, Y.K. Dwivedi, S. Saumya, P.K. Roy, Predicting the
“helpfulness” of online consumer reviews, Journal of Business Research 70 (2017)
346–355.
[58] L.C. Tidwell, J.B. Walther, Computer-mediated communication effects on disclosure, impressions, and interpersonal evaluations: getting to know one another a
bit at a time, Human Communication Research 28 (3) (2002) 317–348.
[59] R. Ullah, N. Amblee, W. Kim, H. Lee, From valence to emotions: exploring the
distribution of emotions in online product reviews, Decision Support Systems 81
(2016) 41–53.
[60] R. Ullah, A. Zeb, W. Kim, The impact of emotions on the helpfulness of movie
reviews, Journal of Applied Research and Technology 13 (3) (2015) 359–363.
[61] X. Wang, L. Tang, E. Kim, More than words: do emotional content and linguistic
style matching matter on restaurant review helpfulness? International Journal of
Hospitality Management 77 (2019) 438–447.
[62] D. Weathers, S.D. Swain, V. Grover, Can online product reviews be more helpful?
Examining characteristics of information content by product type, Decision Support
Systems 79 (2015) 12–23.
[63] J. Wu, Review popularity and review helpfulness: a model for user review effectiveness, Decision Support Systems 97 (2017) 92–103.
[64] S. Xiao, C.-P. Wei, M. Dong, Crowd intelligence: analyzing online product reviews
for preference measurement, Information & Management 53 (2) (2016) 169–182.
[65] D. Yin, S.D. Bond, H. Zhang, Anxious or angry: effects of discrete emotions on the
perceived helpfulness of online reviews, MIS Quarterly 38 (2) (2014) 539–560.
[66] D. Yu, Y. Mu, Y. Jin, Rating prediction using review texts with underlying sentiments, Information Processing Letters 117 (2017) 10–18.
[67] Y. Zhang, Z. Lin, Predicting the helpfulness of online product reviews: a multilingual approach, Electronic Commerce Research and Applications 27 (2018) 1–10.
[68] X. Zheng, S. Zhu, Z. Lin, Capturing the essence of word-of-mouth for social commerce: assessing the quality of online e-commerce reviews by a semi-supervised
approach, Decision Support Systems 56 (2013) 211–222.
[69] S. Zhou, B. Guo, The order effect on online review helpfulness: a social influence
perspective, Decision Support Systems 93 (2017) 77–87.
[70] D.H. Zhu, Z.J. Zhang, Y.P. Chang, S. Liang, Good discounts earn good reviews in
return? Effects of price promotion on online restaurant reviews, International
Journal of Hospitality Management 77 (2019) 178–186.
[71] H. Zhu, C.X.J. Ou, W.J.A.M. van den Heuvel, H. Liu, Privacy calculus and its utility
for personalization services in e-commerce: an analysis of consumer decisionmaking, Information & Management 54 (4) (2017) 427–437.

Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category

Li K, Chen Y, Zhang L, (2020), Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category, Journal of Retailing and Consumer Services, Volume 55, July 2020, 102107

https://www.sciencedirect.com/science/article/abs/pii/S0969698919304011

Mots clés : Avis en ligne, Facteurs motivants, Ventes de produits, Catégorie de produit, Méta-analyse, Effet modérateur

Résumé : Les avis en ligne, qui influencent considérablement les ventes de produits, ont été un sujet de recherche central dans le domaine du marketing. Pendant ce temps, certains facteurs de motivation liés aux détaillants en ligne ont été liés aux ventes de produits. Alors que plusieurs articles ont examiné l’impact entre les critiques en ligne et les facteurs de motivation sur les ventes de produits, de nombreuses conclusions tirées sont contradictoires. À partir de 28 études axées sur les avis et les ventes en ligne, cette étude effectue une méta-analyse pour analyser les véritables impacts de six facteurs liés aux avis (c.-à-d. Le nombre d’avis, le nombre d’étoiles, l’écart-type des notes, l’utilité, la durée de l’avis et le sentiment) et deux facteurs de motivation (c.-à-d. rabais sur les prix et expédition spéciale) sur les ventes de produits. Pendant ce temps, ce document étudie également comment un facteur lié au produit (c.-à-d. L’âge du produit) et un facteur lié aux examinateurs (i. e., la réputation de l’examinateur) influencent la relation entre les avis en ligne et les ventes de produits. De plus, pour étudier l’effet modérateur de la catégorie de produits, nous divisons la littérature sélectionnée en deux sous-groupes qui sont des produits de recherche et d’expérience. Les résultats indiquent que seules la longueur de l’examen et l’expédition spéciale n’ont pas d’impact significatif sur les ventes de produits, tandis que la catégorie de produit a un effet modérateur valide et spécifique sur la relation entre ces déterminants et les ventes. Les conclusions présentées auront des implications importantes pour la recherche universitaire et les futures pratiques de l’industrie. Nous divisons la littérature sélectionnée en deux sous-groupes qui sont des produits de recherche et d’expérience. Les résultats indiquent que seule la durée de l’examen et l’expédition spéciale n’ont pas d’impact significatif sur les ventes de produits, tandis que la catégorie de produit a un effet modérateur valide et spécifique sur la relation entre ces déterminants et les ventes. Les conclusions présentées auront des implications importantes pour la recherche universitaire et les futures pratiques de l’industrie. Nous divisons la littérature sélectionnée en deux sous-groupes qui sont des produits de recherche et d’expérience. Les résultats indiquent que seules la durée de l’examen et l’expédition spéciale n’ont pas d’impact significatif sur les ventes de produits, tandis que la catégorie de produit a un effet modérateur valide et spécifique sur la relation entre ces déterminants et les ventes. Les conclusions présentées auront des implications importantes pour la recherche universitaire et les futures pratiques de l’industrie.


Archak, N., Ghose, A., Ipeirotis, P.G., 2011. Deriving the pricing power of product
features by mining consumer reviews. Manag. Sci. 57, 1485–1509.
Artursson, E., 2015. Online Ratings–Who Decides what Games You Buy. Master Thesis in
Economics. Lunds Universitet.
Babi�c Rosario, A., Sotgiu, F., De Valck, K., Bijmolt, T.H.A., 2016. The effect of electronic
word of mouth on sales: A meta-analytic review of platform, product, and metric
factors. J. Mark. Res 53 (3), 297–318.
Bao, T., Chang, T.S., 2014a. Finding disseminators via electronic word of mouth message
for effective marketing communications. Decis. Support Syst. 67, 21–29.
Bao, T., Chang, T.S., 2014b. Why Amazon uses both the New York Times Best Seller List
and customer reviews: an empirical study of multiplier effects on product sales from
multiple earned media. Decis. Support Syst. 67, 1–8.
Blundell, M., 2014. Understanding and synthesizing my numerical data. A. Boland, M.G.
Cherry, R. Dickson (Eds.), Doing a Syst. Rev. Sage, London, UK 99–123.
Bosman, D.J., Boshoff, C., Van Rooyen, G.-J., 2013. The review credibility of electronic
word-of-mouth communication on e-commerce platforms. Manag. Dyn. J. South.
Afr. Inst. Manag. Sci. 22, 29–44.
Caballero, L., 2015. The Impact of Online Ratings on Video Game Sales. Master Thesis in
Management. Nova School of Business and Economics.
Chatterjee, P., 2001. Online Reviews: Do Consumers Use Them?.
Chen, K., Luo, P., Wang, H., 2017. An influence framework on product word-of-mouth
(WoM) measurement. Inf. Manag. 54, 228–240.
Chen, P.-Y., Dhanasobhon, S., Smith, M.D., 2008. All reviews are not created equal: the
disaggregate impact of reviews and reviewers at amazon. com, Working paper,
Carnegie Mellon University. Available at: SSRN. https://ssrn.com/abstract¼918083.
https://doi.org/10.2139/ssrn.918083.
Chen, P.-Y., Wu, S., Yoon, J., 2004. The impact of online recommendations and consumer
feedback on sales. In: International Conference on Information Systems (ICIS),
pp. 711–724.
Chen, Y., Xie, J., 2008. Online consumer review: word-of-mouth as a new element of
marketing communication mix. Manag. Sci. 54, 477–491.
Cho, Y., Im, I., Hiltz, R., Fjermestad, J., 2002. An analysis of online customer complaints:
implications for web complaint management. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences. IEEE, Hawaii, pp. 2308–2317.
Clemons, E.K., Gao, G.G., Hitt, L.M., 2006. When online reviews meet
hyperdifferentiation: a study of the craft beer industry. J. Manag. Inf. Syst. 23,
149–171.
Cui, G., Lui, H.-K., Guo, X., 2012. The effect of online consumer reviews on new product
sales. Int. J. Electron. Commer. 17, 39–58.
Cui, J., Pan, Y., Wang, L., 2012b. Impact of online review on sales: an empirical
investigation of experience products with different popularities. In: 2012
International Conference on Management of E-Commerce and E-Government. IEEE,
pp. 48–53.
DerSimonian, R., Kacker, R., 2007. Random-effects model for meta-analysis of clinical
trials: an update. Contemp. Clin. Trials 28, 105–114.
Dixit, S., Badgaiyan, A.J., Khare, A., 2019. An integrated model for predicting
consumer’s intention to write online reviews. J. Retailing Consum. Serv. 46,
112–120.
Duan, W., Gu, B., Whinston, A.B., 2008. Do online reviews matter?—an empirical
investigation of panel data. Decis. Support Syst. 45, 1007–1016.
Dwivedi, Y.K., Rana, N.P., Chen, H., Williams, M.D., 2011. A meta-analysis of the unified
theory of acceptance and use of technology (UTAUT). In: IFIP International Working
Conference on Governance and Sustainability in Information Systems-Managing the
Transfer and Diffusion of it. Springer, pp. 155–170.
Ehrmann, T., Schmale, H., 2008. The hitchhiker’s guide to the long tail: the influence of
online-reviews and product recommendations on book sales-Evidence from German
online retailing. In: International Conference on Information Systems, p. 157.
Eliashberg, J., Sawhney, M.S., 1994. Modeling goes to Hollywood: predicting individual
differences in movie enjoyment. Manag. Sci. 40, 1151–1173.
Fang, H., Zhang, J., Bao, Y., Zhu, Q., 2013. Towards effective online review systems in
the Chinese context: a cross-cultural empirical study. Electron. Commer. Res. Appl.
12, 208–220.
Field, A.P., 2001. Meta-analysis of correlation coefficients: a Monte Carlo comparison of
fixed-and random-effects methods. Psychol. Methods 6, 161.
Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., Sarris, J., 2017.
The efficacy of smartphone-based mental health interventions for depressive
symptoms: a meta-analysis of randomized controlled trials. World Psychiatr. 16,
287–298.
Fleiss, J.L., 1993. Review papers: the statistical basis of meta-analysis. Stat. Methods
Med. Res. 2, 121–145.
Floyd, K., Freling, R., Alhoqail, S., Cho, H.Y., Freling, T., 2014. How online product
reviews affect retail sales: a meta-analysis. J. Retailing 90, 217–232.
Forman, C., Ghose, A., Wiesenfeld, B., 2008. Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets. Inf. Syst. Res.
19, 291–313.
Franke, G.R., Huhmann, B.A., Mothersbaugh, D.L., 2004. Information content and
consumer readership of print ads: a comparison of search and experience products.
J. Acad. Market. Sci. 32, 20–31.
Girard, T., Dion, P., 2010. Validating the search, experience, and credence product
classification framework. J. Bus. Res. 63, 1079–1087.
Glass, G.V., 1976. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8.
Gu, B., Park, J., Konana, P., 2012. Research note—the impact of external word-of-mouth
sources on retailer sales of high-involvement products. Inf. Syst. Res. 23, 182–196.
Gu, B., Tang, Q., Whinston, A.B., 2013. The influence of online word-of-mouth on long
tail formation. Decis. Support Syst. 56, 474–481.
Gurevitch, J., Koricheva, J., Nakagawa, S., Stewart, G., 2018. Meta-analysis and the
science of research synthesis. Nature 555, 175–182.
Hellofs, L.L., Jacobson, R., 1999. Market share and customers’ perceptions of quality:
when can firms grow their way to higher versus lower quality? J. Market. 63, 16–25.
Herrmann, A., Huber, F., Coulter, R.H., 1997. Product and service bundling decisions and
their effects on purchase intention. Pricing Strategy & Pract. 5 (3), 99–104.
Hong, H., Xu, D., Wang, G.A., Fan, W., 2017. Understanding the determinants of online
review helpfulness: a meta-analytic investigation. Decis. Support Syst. 102, 1–11.
Hu, N., Bose, I., Koh, N.S., Liu, L., 2012. Manipulation of online reviews: an analysis of
ratings, readability, and sentiments. Decis. Support Syst. 52, 674–684.
Hu, N., Koh, N.S., Reddy, S.K., 2014. Ratings lead you to the product, reviews help you
clinch it? The mediating role of online review sentiments on product sales. Decis.
Support Syst. 57, 42–53.
Hu, N., Liu, L., Zhang, J.J., 2008. Do online reviews affect product sales? The role of
reviewer characteristics and temporal effects. Inf. Technol. Manag. 9, 201–214.
Jiang, B.-J., Wang, B., 2008. Impact of consumer reviews and ratings on sales, prices, and
profits: theory and evidence. In: International Conference on Information Systems,
p. 141.
Jim�enez, F.R., Mendoza, N.A., 2013. Too popular to ignore: the influence of online
reviews on purchase intentions of search and experience products. J. Interact.
Market. 27, 226–235.
Kim, J.B., 2014. Impact of online customer reviews and incentives on the product sales at
the online retail store: an empirical study at Amazon. com. In: Twentieth Americas
Conference on Information Systems, pp. 1–11.
King, W.R., He, J., 2006. A meta-analysis of the technology acceptance model. Inf.
Manag. 43, 740–755.
Lau, R.Y.K., Zhang, W., Bruza, P.D., Wong, K.-F., 2011. Learning domain-specific
sentiment lexicons for predicting product sales. In: 2011 IEEE 8th International
Conference on E-Business Engineering. IEEE, pp. 131–138.
Lee, J., Park, D.-H., Han, I., 2008. The effect of negative online consumer reviews on
product attitude: an information processing view. Electron. Commer. Res. Appl. 7,
341–352.
Lee, T.Y., Bradlow, E.T., 2011. Automated marketing research using online customer
reviews. J. Market. Res. 48, 881–894.
Li, H., Fang, Y., Wang, Y., Lim, K.H., Liang, L., 2015. Are all signals equal? Investigating
the differential effects of online signals on the sales performance of e-marketplace
sellers. Inf. Technol. People 28, 699–723.
Li, X., Hitt, L.M., 2010. Price effects in online product reviews: an analytical model and
empirical analysis. MIS Q. 809–831.
Li, X., Hitt, L.M., 2008. Self-selection and information role of online product reviews. Inf.
Syst. Res. 19, 456–474.
Li, X., Wu, C., Mai, F., 2019. The effect of online reviews on product sales: a joint
sentiment-topic analysis. Inf. Manag. 56, 172–184.
Lim, C., 1999. A meta-analytic review of international tourism demand. J. Trav. Res. 37,
273–284.
Lin, Z., 2014. An empirical investigation of user and system recommendations in ecommerce. Decis. Support Syst. 68, 111–124.
Lipsey, M.W., Wilson, D.B., 2001. Practical Meta-Analysis. Sage Publications, Inc.
Liu, Q., Huang, S., Zhang, L., 2016. The influence of information cascades on online
purchase behaviors of search and experience products. Electron. Commer. Res. 16,
553–580.
Liu, Q., Zhang, X., Zhang, L., Zhao, Y., 2018. The interaction effects of information
cascades, word of mouth and recommendation systems on online reading behavior:
an empirical investigation. Electron. Commer. Res. 1–27 https://doi.org/10.1007/
s10660-018-9312-0.
Maslowska, E., Malthouse, E.C., Bernritter, S.F., 2017. The effect of online customer
reviews’ characteristics on sales. In: Advances in Advertising Research, vol. VII.
Springer, pp. 87–100.
Meiseberg, B., 2016. The effectiveness of e-tailers’ communication practices in
stimulating sales of niche versus popular products. J. Retailing 92, 319–332.
K. Li et al.
Journal of Retailing and Consumer Services 55 (2020) 102107
11
Meng, Y., Wang, H., Zheng, L., 2018. Impact of online word-of-mouth on sales: the
moderating role of product review quality. New Rev. Hypermedia Multimedia 24,
1–27.
Moe, W., 2009. How Much Does a Good Product Rating Help a Bad Product? Modeling
the Role of Product Quality in the Relationship between Online Consumer Ratings
and Sales, Working Paper. University Of Maryland College Park.
Monroe, K.B., 2003. Pricing: Making Profitable Decisions, third ed. McGraw Hill Book
Company, New York.
Moon, S., Park, Y., Seog Kim, Y., 2014. The impact of text product reviews on sales. Eur.
J. Market. 48, 2176–2197.
Mudambi, S.M., Schuff, D., 2010. What makes a helpful online review? A study of
customer reviews on Amazon. com. MIS Q. 34, 185–200.
Nelson, P., 1974. Advertising as information. J. Polit. Econ. 82, 729–754.
Park, C., Lee, T.M., 2009. Information direction, website reputation and eWOM effect: a
moderating role of product type. J. Bus. Res. 62, 61–67.
Park, C.W., Stice, E.K., 2000. Analyst forecasting ability and the stock price reaction to
forecast revisions. Rev. Account. Stud. 5, 259–272.
Park, D.-H., Lee, J., Han, I., 2007. The effect of on-line consumer reviews on consumer
purchasing intention: the moderating role of involvement. Int. J. Electron. Commer.
11, 125–148.
Purnawirawan, N., Eisend, M., De Pelsmacker, P., Dens, N., 2015. A meta-analytic
investigation of the role of valence in online reviews. J. Interact. Market. 31, 17–27.
Ren, J., Nickerson, J.V., 2019. Arousal, valence, and volume: how the influence of online
review characteristics differs with respect to utilitarian and hedonic products. Eur. J.
Inf. Syst. 28, 272–290.
Rese, A., Schreiber, S., Baier, D., 2014. Technology acceptance modeling of augmented
reality at the point of sale: can surveys be replaced by an analysis of online reviews?
J. Retailing Consum. Serv. 21, 869–876.
Rosenthal, R., 1986. Meta-analytic procedures for social science research. Educ. Res. 15,
18–20.
Sahoo, N., Srinivasan, S., Dellarocas, C., 2013. The impact of online product reviews on
product returns and net sales. In: 2013 Workshop on Information Systems
Economics, Milan, Italy.
Schubert, P., Ginsburg, M., 2000. Virtual communities of transaction: the role of
personalization in electronic commerce. Electron. Mark. 10, 45–55.
Sparks, B.A., Browning, V., 2011. The impact of online reviews on hotel booking
intentions and perception of trust. Tourism Manag. 32, 1310–1323.
Tang, T., Fang, E., Wang, F., 2014. Is neutral really neutral? The effects of neutral usergenerated content on product sales. J. Market. 78, 41–58.
Weisstein, F.L., Song, L., Andersen, P., Zhu, Y., 2017. Examining impacts of negative
reviews and purchase goals on consumer purchase decision. J. Retailing Consum.
Serv. 39, 201–207.
Wu, J., Du, L., Dang, Y., 2018. Research on the impact of consumer review sentiments
from different websites on product sales. In: 2018 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C). IEEE, pp. 332–338.
Yan, J., Zhang, Li, Zhang, Lei, 2012. An empirical study of the impact of review content
on online reviews helpfulness in e-commerce. Inf. Sci. 30, 713–718.
Yang, Y., Park, S., Hu, X., 2018. Electronic word of mouth and hotel performance: a
meta-analysis. Tourism Manag. 67, 248–260. https://doi.org/10.1016/j.
tourman.2018.01.015.
Yao, R., Chen, J., 2013. Predicting movie sales revenue using online reviews. In: 2013
IEEE International Conference on Granular Computing (GrC). IEEE, pp. 396–401.
Ye, Q., Law, R., Gu, B., Chen, W., 2011. The influence of user-generated content on
traveler behavior: an empirical investigation on the effects of e-word-of-mouth to
hotel online bookings. Comput. Hum. Behav. 27, 634–639.
Ye, Y., Zhao, Y., Shang, J., Zhang, L., 2019. A hybrid IT framework for identifying highquality physicians using big data analytics. Int. J. Inf. Manag. 47, 65–75.
You, Y., Vadakkepatt, G.G., Joshi, A.M., 2015. A meta-analysis of electronic word-ofmouth elasticity. J. Market. 79, 19–39.
Zhang, L., Ma, B., Cartwright, D.K., 2013. The impact of online user reviews on cameras
sales. Eur. J. Market. 47, 1115–1128.
Zhang, L., Zhu, J., Liu, Q., 2012. A meta-analysis of mobile commerce adoption and the
moderating effect of culture. Comput. Hum. Behav. 28, 1902–1911.
Zhao, Y., Ni, Q., Zhou, R., 2018. What factors influence the mobile health service
adoption? A meta-analysis and the moderating role of age. Int. J. Inf. Manag. 43,
342–350.
Zhu, F., Zhang, X., 2010. Impact of online consumer reviews on sales: the moderating
role of product and consumer characteristics. J. Market. 74, 133–148.
Zhu, L., Yin, G., He, W., 2014. Is this opinion leader’s review useful? Peripheral cues for
online review helpfulness. J. Electron. Commer. Res. 15, 267.

Credibility of negative online product reviews: Reviewer gender, reputation and emotion effects

Craciun G, Moore K, (2019), Credibility of negative online product reviews: Reviewer gender, reputation and emotion effects, Computers in Human Behavior, Volume 97, August 2019, Pages 104-115

https://www.sciencedirect.com/science/article/pii/S0747563219301025

Mots clés : Bouche à oreille électronique, Stéréotypes de genre, Émotion, Crédibilité de l’examinateur, Avis sur les produits, Expressions émotionnelles, Théorie de l’espérance linguistique

Résumé : La documentation électronique sur le bouche-à-oreille confirme la conclusion solide selon laquelle les avis négatifs influencent généralement plus le comportement des consommateurs que les avis positifs. De plus, des études récentes suggèrent qu’une grande partie du biais de négativité est motivée par les émotions distinctes intégrées dans le contenu du bouche à oreille négatif  et les effets d’interaction entre les émotions et d’autres facteurs sources. Bien que le sexe de la source d’information soit une heuristique courante utilisée dans l’évaluation des messages, il s’agit de la première étude à examiner l’effet des stéréotypes de genre sur le bouche à oreille émotionnel. Deux expériences basées sur le Web montrent que lorsque des indices de réputation de critique sont présents, le contenu émotionnel dans le bouche à oreille négatif diminue la crédibilité des critiques masculins et l’utilité de leurs critiques, mais n’affecte pas les critiques rédigées par des femmes. En revanche, lorsque les indices de réputation sont absents, la présence d’émotions dans le bouche à oreille négatif diminue la crédibilité des examinateurs féminins, mais pas celle des examinateurs masculins. L’indice de réputation a un effet positif sur la crédibilité et l’utilité du bouche à oreille négatif.

Grandes lignes :

  • Le bouche-à-oreille négatif influe généralement davantage sur le comportement des consommateurs que le bouche-à-oreille positif.
  • Cette étude examine les effets de la réputation et des stéréotypes liés au sexe sur la crédibilité et l’utilité du bouche-à-oreille négatif
  • Lorsque les indices de réputation des évaluateurs étaient absents, le contenu émotionnel du bouche-à-oreille négatif a nui à l’évaluation des critiques rédigées par des femmes
  • Lorsque les indices de réputation des examinateurs étaient présents, le contenu émotionnel du bouche-à-oreille négatif a nui à l’évaluation des critiques rédigées par des hommes.
  • L’indice de réputation a eu un effet positif sur la crédibilité et l’utilité du bouche-à-oreille négatif.

Afifi, W. A., & Metts, S. (1998). Characteristics and consequences of expectation violations in close relationships. Journal of Social and Personal Relationships, 15(3),
365–392. https://doi.org/10.1177/0265407598153004.
Ahmad, S. N., & Laroche, M. (2015). How do expressed emotions affect the helpfulness of
a product review? Evidence from reviews using latent semantic analysis. International
Journal of Electronic Commerce, 20(1), 76–111. https://doi.org/10.1080/10864415.
2016.1061471.
Armstrong, C. L., & McAdams, M. J. (2009). Blogs of information: How gender cues and
individual motivations influence perceptions of credibility. Journal of ComputerMediated Communication, 14(3), 435–456. https://doi.org/10.1111/j.1083-6101.
2009.01448.x.
Armstrong, C. L., & Nelson, M. R. (2005). How newspaper sources trigger gender stereotypes. Journalism & Mass Communication Quarterly, 82(4), 820–837.
Averbeck, J. M., & Miller, C. (2014). Expanding language expectancy theory: The suasory
effects of lexical complexity and syntactic complexity on effective message design.
Communication Studies, 65(1), 72–95. https://doi.org/10.1080/10510974.2013.
775955.
Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers’
G. Craciun and K. Moore Computers in Human Behavior 97 (2019) 104–115
113
objectives and review cues. International Journal of Electronic Commerce, 17(2),
99–126. https://doi.org/10.2753/JEC1086-4415170204.
Biernat, M. (2003). Toward a broader view of social stereotyping. American Psychologist,
58(12), 1019–1027. https://doi.org/10.1037/0003-066X.58.12.1019.
Biernat, M., Crandall, C. S., Young, L. V., Kobrynowicz, D., & Halpin, S. M. (1998). All that
you can be: Stereotyping of self and others in a military context. Journal of Personality
and Social Psychology, 75(2), 301–317. https://doi.org/10.1037/0022-3514.75.2.
301.
Biernat, M., Ma, J. E., & Nario-Redmond, M. R. (2008). Standards to suspect and diagnose
stereotypical traits. Social Cognition, 26(3), 288–313.
Brescoll, V. L., & Uhlmann, E. L. (2008). Can an angry woman get ahead? Status conferral,
gender, and expression of emotion in the workplace. Psychological Science, 19(3),
268–275. https://doi.org/10.1111/j.1467-9280.2008.02079.x.
Brody, L. R., & Hall, J. A. (1993). Gender and emotion. Handbook of emotions (pp. 447–
460). New York, NY, US: Guilford Press.
Brown, J. J., & Reingen, P. H. (1987). Social ties and word-of-mouth referral behavior.
Journal of Consumer Research, 14(3), 350–362. https://doi.org/10.1086/209118.
Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of Consumer Research, 12(1), 1–16.
Burgoon, M., Birk, T. S., & Hall, J. R. (1991). Compliance and satisfaction with physicianpatient communication. An expectancy theory interpretation of gender differences.
Human Communication Research, 18(2), 177–208. https://doi.org/10.1111/j.1468-
2958.1991.tb00543.x.
Burgoon, M., Denning, V. P., & Roberts, L. (2002). Language expectancy theory. In J. P.
Dillard, & M. Pfau (Eds.). The persuasion handbook : Developments in theory and practice
(pp. 117–136). Thousand Oaks, CA: Sage Publications.
Burgoon, M., Jones, S. B., & Stewart, D. (1975). Toward a message-centered theory of
persuasion: Three empirial investigations of language intensity. Human
Communication Research, 1(3), 240–256. https://doi.org/10.1111/j.1468-2958.1975.
tb00271.x.
Buttner, E. H., & McEnally, M. (1996). The interactive effect of influence tactic, applicant
gender, and type of job on hiring recommendations. Sex Roles, 34(7–8), 581–591.
Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the ‘helpfulness’ of online user reviews: A text mining approach. Decision Support Systems,
50(2), 511–521. https://doi.org/10.1016/j.dss.2010.11.009.
Carli, L. L. (2001). Gender and social influence. Journal of Social Issues, 57(4), 725.
Carpenter, S., & Trentham, S. (1998). Subtypes of women and men: A new taxonomy and
an exploratory categorical analysis. Journal of Social Behavior & Personality, 13(4),
679–696.
Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29(6), 2156–2160. https://doi.org/
10.1016/j.chb.2013.05.009.
Chai, S., Das, S., & Rao, H. R. (2011). Factors affecting bloggers’ knowledge sharing: An
investigation across gender. Journal of Management Information Systems, 28(3),
309–342.
Chaiken, S. (1980). Heuristic versus systematic information processing and the use of
source versus message cues in persuasion. Journal of Personality and Social Psychology,
39(5), 752–766.
Chaiken, S., & Maheswaran, D. (1994). Heuristic processing can bias systematic processing: Effects of source credibility, argument ambiguity, and task importance on attitude judgment. Journal of Personality and Social Psychology, 66(3), 460–473. https://
doi.org/10.1037/0022-3514.66.3.460.
Chakravarty, A., Liu, Y., & Mazumdar, T. (2010). The differential effects of online wordof-mouth and critics’ reviews on pre-release movie evaluation. Journal of Interactive
Marketing, 24(3), 185–197. https://doi.org/10.1016/j.intmar.2010.04.001.
Chen, G. M., & Abedin, Z. (2014). Exploring differences in how men and women respond
to threats to positive face on social media. Computers in Human Behavior, 38,
118–126. https://doi.org/10.1016/j.chb.2014.05.029.
Cheung, C. M. K., Lee, M. K. O., & Rabjohn, N. (2008). The impact of electronic word‐of‐mouth: The adoption of online opinions in online customer communities. Internet
Research, 18(3), 229–247. https://doi.org/10.1108/10662240810883290.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book
reviews. Journal of Marketing Research, 43(3), 345–354. https://doi.org/10.1509/
jmkr.43.3.345.
Chua, A. Y. K., & Banerjee, S. (2015). Understanding review helpfulness as a function of
reviewer reputation, review rating, and review depth. Journal of the Association for
Information Science and Technology, 66(2), 354–362. https://doi.org/10.1002/asi.
23180.
Chu, S.-C., & Kim, Y. (2011). Determinants of consumer engagement in electronic wordof-mouth (eWOM) in social networking sites. International Journal of Advertising,
30(1), 47–75. https://doi.org/10.2501/IJA-30-1-047-075.
Clemons, E. K., Gao, G. G., & Hitt, L. M. (2006). When online reviews meet hyperdifferentiation: A study of the craft beer industry. Journal of Management
Information Systems, 23(2), 149–171. https://doi.org/10.2753/MIS0742-
1222230207.
Cotterill, S. T. (2018). The psychology of performance. London: Routledge.
Deaux, K., & Lewis, L. L. (1984). Structure of gender stereotypes: Interrelationships
among components and gender label. Journal of Personality and Social Psychology,
46(5), 991–1004. https://doi.org/10.1037/0022-3514.46.5.991.
Derks, D., Bos, A. E. R., & von Grumbkow, J. (2007). Emoticons and social interaction on
the Internet: The importance of social context. Computers in Human Behavior, 23(1),
842–849. https://doi.org/10.1016/j.chb.2004.11.013.
Dou, X., Walden, J. A., Lee, S., & Lee, J. Y. (2012). Does source matter? Examining source
effects in online product reviews. Computers in Human Behavior, 28(5), 1555–1563.
https://doi.org/10.1016/j.chb.2012.03.015.
Eckes, T. (2002). Paternalistic and envious gender stereotypes: Testing predictions from
the stereotype content model. Sex Roles, 47(3/4), 99–114.
Fabes, R.,A., & Martin, C. L. (1991). Gender and age stereotypes of emotionality.
Personality and Social Psychology Bulletin, 17(5), 532–540. https://doi.org/10.1177/
0146167291175008.
Felix, R., Rauschnabel, P. A., & Hinsch, C. (2017). Elements of strategic social media
marketing: A holistic framework. Journal of Business Research, 70, 118–126. https://
doi.org/10.1016/j.jbusres.2016.05.001.
Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of
Business Research, 68(6), 1261–1270. https://doi.org/10.1016/j.jbusres.2014.11.
006.
Fiske, S. T. (1993). Social cognition and social perception. Annual Review of Psychology,
44(1), 155–194. https://doi.org/10.1146/annurev.ps.44.020193.001103.
Folse, J. A. G., Porter, M., III, Godbole, M. B., & Reynolds, K. E. (2016). The effects of
negatively valenced emotional expressions in online reviews on the reviewer, the
review, and the product. Psychology and Marketing, 33(9), 747–760. https://doi.org/
10.1002/mar.20914.
Ford, J. B. (2017). Amazon’s mechanical Turk: A comment. Journal of Advertising, 46(1),
156–158. https://doi.org/10.1080/00913367.2016.1277380.
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between
reviews and sales: The role of reviewer identity disclosure in electronic markets.
Information Systems Research, 19(3), 291–313. https://doi.org/10.1287/isre.1080.
0193.
Gershoff, A. D., Broniarczyk, S. M., & West, P. M. (2001). Recommendation or evaluation?
Task sensitivity in information source selection. Journal of Consumer Research, 28(3),
418–438. https://doi.org/10.1086/323730.
Guo, B., & Zhou, S. (2017). What makes population perception of review helpfulness: An
information processing perspective. Electronic Commerce Research, 17(4), 585–608.
https://doi.org/10.1007/s10660-016-9234-7.
Hess, U., Adams, R. B., Jr., & Kleck, R. E. (2007). When two do the same, it might not
mean the same: The perception of emotional expressions shown by men and women.
In U. Hess, P. Philippot, U. Hess, & P. Philippot (Eds.). Group dynamics and emotional
expression (pp. 33–50). New York, NY, US: Cambridge University Press.
Hess, U., Senécal, S., Kirouac, G., Herrera, P., Philippot, P., & Kleck, R. E. (2000).
Emotional expressivity in men and women: Stereotypes and self-perceptions.
Cognition & Emotion, 14(5), 609–642. https://doi.org/10.1080/
02699930050117648.
Hong, H., Xu, D., Wang, G. A., & Fan, W. (2017). Understanding the determinants of
online review helpfulness: A meta-analytic investigation. Decision Support Systems,
102, 1–11. https://doi.org/10.1016/j.dss.2017.06.007.
Jansen, J. (2010). Online product research. Retrieved from: http://pewinternet.org/
Reports/2010/Online-Product-Research.aspx.
Jensen, M. L., Averbeck, J. M., Zhang, Z., & Wright, K. B. (2013). Credibility of anonymous online product reviews: A language expectancy perspective. Journal of
Management Information Systems, 30(1), 293–324. https://doi.org/10.2753/MIS0742-
1222300109.
Kang, Y. S., & Herr, P. M. (2006). Beauty and the beholder: Toward an integrative model
of communication source effects. Journal of Consumer Research, (1), 123. https://doi.
org/10.1086/504143.
Kees, J., Berry, C., Burton, S., & Sheehan, K. (2017). An analysis of data quality:
Professional panels, student subject pools, and Amazon’s Mechanical Turk. Journal of
Advertising, 46(1), 141–155. https://doi.org/10.1080/00913367.2016.1269304.
Kim, J., & Gupta, P. (2012). Emotional expressions in online user reviews: How they
influence consumers’ product evaluations. Journal of Business Research, 65(7),
985–992. https://doi.org/10.1016/j.jbusres.2011.04.013.
Kim, S., Kandampully, J., & Bilgihan, A. (2018). The influence of eWOM communications:
An application of online social network framework. Computers in Human Behavior, 80,
243–254. https://doi.org/10.1016/j.chb.2017.11.015.
Kim, S. J., Maslowska, E., & Malthouse, E. C. (2017). Understanding the effects of different review features on purchase probability. International Journal of Advertising,
1–25. https://doi.org/10.1080/02650487.2017.1340928.
Kim, S. J., Wang, R. J.-H., Maslowska, E., & Malthouse, E. C. (2016). “Understanding a
fury in your words”: The effects of posting and viewing electronic negative word-ofmouth on purchase behaviors. Computers in Human Behavior, 54, 511–521. https://
doi.org/10.1016/j.chb.2015.08.015.
Kuan, K. K. Y., Kai-Lung, H., Prasarnphanich, P., & Hok-Yin, L. (2015). What makes a
review voted? An empirical investigation of review voting in online review systems.
Journal of the Association for Information Systems, 16(1), 48–71.
Lee, D.-H., Im, S., & Taylor, C. R. (2008). Voluntary self-disclosure of information on the
Internet: A multimethod study of the motivations and consequences of disclosing
information on blogs. Psychology and Marketing, 25(7), 692–710.
Li, M., Huang, L., Tan, C.-H., & Wei, K.-K. (2013). Helpfulness of online product reviews
as seen by consumers: Source and content features. International Journal of Electronic
Commerce, 17(4), 101–136. https://doi.org/10.2753/JEC1086-4415170404.
Ludwig, S., de Ruyter, K., Friedman, M., Brüggen, E. C., Wetzels, M., & Pfann, G. (2013).
More than words: The influence of affective content and linguistic style matches in
online reviews on conversion rates. Journal of Marketing, 77(1), 87–103. https://doi.
org/10.1509/jm.11.0560.
Mittal, B. (1995). A comparative analysis of four scales of consumer involvement.
Psychology and Marketing, 12(7), 663–682.
Pan, L.-Y., & Chiou, J.-S. (2011). How much can you trust online information? Cues for
perceived trustworthiness of consumer-generated online information. Journal of
Interactive Marketing, 25(2), 67–74. https://doi.org/10.1016/j.intmar.2011.01.002.
Pan, Y., & Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated
product reviews. Journal of Retailing, 87(4), 598–612. https://doi.org/10.1016/j.
G. Craciun and K. Moore Computers in Human Behavior 97 (2019) 104–115
114
jretai.2011.05.002.
Park, D.-H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral
intention depending on consumer involvement. Electronic Commerce Research and
Applications, 7(4), 386–398. https://doi.org/10.1016/j.elerap.2007.11.004.
Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect:
A moderating role of product type. Journal of Business Research, 62(1), 61–67. https://
doi.org/10.1016/j.jbusres.2007.11.017.
Peer, E., Brandimarte, L., Samat, S., & Acquisti, A. (2017). Beyond the Turk: Alternative
platforms for crowdsourcing behavioral research. Journal of Experimental Social
Psychology, 70, 153–163. https://doi.org/10.1016/j.jesp.2017.01.006.
Quaschning, S., Pandelaere, M., & Vermeir, I. (2015). When consistency matters: The
effect of valence consistency on review helpfulness. Journal of Computer-Mediated
Communication, 20(2), 136–152. https://doi.org/10.1111/jcc4.12106.
Rauschnabel, P. A., Kammerlander, N., & Ivens, B. S. (2016). Collaborative brand attacks
in social media: Exploring the antecedents, characteristics, and consequences of a
new form of brand crises. Journal of Marketing Theory and Practice, 24(4), 381–410.
https://doi.org/10.1080/10696679.2016.1205452.
Richins, M. L. (1997). Measuring emotions in the consumption experience. Journal of
Consumer Research, 24(2), 127–146.
Rogers, E. M. (1995). Diffusion of innovations (4 ed.). New York, NY: The Free Press.
Salerno, J. M., & Peter-Hagene, L. C. (2015). One angry woman: Anger expression increases influence for men, but decreases influence for women, during group deliberation. Law and Human Behavior, 39(6), 581–592. https://doi.org/10.1037/
lhb0000147.
Schellekens, G. A. C., Verlegh, P. W. J., & Smidts, A. (2010). Language abstraction in word
of mouth. Journal of Consumer Research, 37(2), 207–223.
Schlosser, A. E., White, T. B., & Lloyd, S. M. (2006). Converting web site visitors into
buyers: How web site investment increases consumer trusting beliefs and online
purchase intentions. Journal of Marketing, 70(2), 133–148. https://doi.org/10.1509/
jmkg.70.2.133.
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative
consumer reviews on the web. Journal of Interactive Marketing, 21(4), 76–94. https://
doi.org/10.1002/dir.20090.
Shin, D. (2018). Empathy and embodied experience in virtual environment: To what
extent can virtual reality stimulate empathy and embodied experience? Computers in
Human Behavior, 78, 64–73. https://doi.org/10.1016/j.chb.2017.09.012.
Shin, D., & Biocca, F. (2018). Exploring immersive experience in journalism. New Media &
Society, 20(8), 2800–2823. https://doi.org/10.1177/1461444817733133.
Shin, D., Lee, S., & Hwang, Y. (2017). How do credibility and utility play in the user
experience of health informatics services? Computers in Human Behavior, 67,
292–302. https://doi.org/10.1016/j.chb.2016.11.007.
Sparks, B. A., & Browning, V. (2011). The impact of online reviews on hotel booking
intentions and perception of trust. Tourism Management, 32(6), 1310–1323. https://
doi.org/10.1016/j.tourman.2010.12.011.
Stout, J. G., Grunberg, V. A., & Ito, T. A. (2016). Gender roles and stereotypes about
science sareers help explain women and men’s science pursuits. Sex Roles, 75(9–10),
490–499. https://doi.org/10.1007/s11199-016-0647-5.
Tang, T., Fang, E., & Feng, W. (2014). Is neutral really neutral? The effects of neutral usergenerated content on product sales. Journal of Marketing, 78(4), 41–58.
Thomas, K. A., & Clifford, S. (2017). Validity and Mechanical Turk: An assessment of
exclusion methods and interactive experiments. Computers in Human Behavior, 77,
184–197. https://doi.org/10.1016/j.chb.2017.08.038.
Thon, F. M., & Jucks, R. (2017). Believing in expertise: How authors’ credentials and
language use influence the credibility of online health information. Health
Communication, 32(7), 828–836. https://doi.org/10.1080/10410236.2016.1172296.
Timmers, M., Fischer, A. H., & Manstead, A. S. R. (2003). Ability versus vulnerability:
Beliefs about men’s and women’s emotional behaviour. Cognition & Emotion, 17(1),
41–63. https://doi.org/10.1080/02699930302277.
Ullah, R., Amblee, N., Kim, W., & Lee, H. (2016). From valence to emotions: Exploring the
distribution of emotions in online product reviews. Decision Support Systems, 81,
41–53. https://doi.org/10.1016/j.dss.2015.10.007.
Van Noort, G., & Willemsen, L. M. (2012). Online damage control: The effects of proactive
versus reactive webcare interventions in consumer-generated and brand-generated
platforms. Journal of Interactive Marketing (Elsevier), 26(3), 131–140. https://doi.org/
10.1016/j.intmar.2011.07.001.
Verhagen, T., Nauta, A., & Feldberg, F. (2013). Negative online word-of-mouth:
Behavioral indicator or emotional release? Computers in Human Behavior, 29(4),
1430–1440. https://doi.org/10.1016/j.chb.2013.01.043.
Vermeulen, A., Vandebosch, H., & Heirman, W. (2018). #Smiling, #venting, or both?
Adolescents’ social sharing of emotions on social media. Computers in Human
Behavior, 84, 211–219. https://doi.org/10.1016/j.chb.2018.02.022.
Vonk, R., & Ashmore, R. D. (2003). Thinking about gender types: Cognitive organization
of female and male types. British Journal of Social Psychology, 42(2), 257.
Wang, S. S., Moon, S.-I., Kwon, K. H., Evans, C. A., & Stefanone, M. A. (2010). Face off:
Implications of visual cues on initiating friendship on Facebook. Computers in Human
Behavior, 26(2), 226–234. https://doi.org/10.1016/j.chb.2009.10.001.
Wigley, S., & Lewis, B. K. (2012). Rules of engagement: Practice what you tweet. Public
Relations Review, 38(1), 165–167. https://doi.org/10.1016/j.pubrev.2011.08.020.
Willemsen, L. M., Neijens, P. C., & Bronner, F. (2012). The ironic effect of source identification on the perceived credibility of online product reviewers. Journal of
Computer-Mediated Communication, 18(1), 16–31. https://doi.org/10.1111/j.1083-
6101.2012.01598.x.
Wolf, A. (2000). Emotional expression online: Gender differences in emoticon use.
CyberPsychology and Behavior, 3(5), 827–833. https://doi.org/10.1089/
10949310050191809.
Wood, W., & Eagly, A. H. (2010). Gender. In (5 ed.). S. T. Fiske, D. T. Gilbert, & G. Lindzey
(Vol. Eds.), Handbook of social psychology: Vol. 1, (pp. 629–667). New York, NY: John
Wiley.
Wu, K., Noorian, Z., Vassileva, J., & Adaji, I. (2015). How buyers perceive the credibility
of advisors in online marketplace: Review balance, review count and misattribution.
Journal of Trust Management, 2(1), 1–18. https://doi.org/10.1186/s40493-015-
0013-5.
Xu, Q. (2014). Should I trust him? The effects of reviewer profile characteristics on eWOM
credibility. Computers in Human Behavior, 33, 136–144. https://doi.org/10.1016/j.
chb.2014.01.027.
Yang, J., & Mai, E. (2010). Experiential goods with network externalities effects: An
empirical study of online rating system. Journal of Business Research, 63(9),
1050–1057. https://doi.org/10.1016/j.jbusres.2009.04.029.
Yin, D., Bond, S. D., & Zhang, H. (2014a). Anxious or angry? Effects of discrete emotions
on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539–560.
Yin, G., Wei, L., Xu, W., & Chen, M. (2014b). Exploring heuristic cues for consumer
perceptions of online reviews helpfulness: The case of yelp.com. Paper presented at the
pacific asia conference on information systems.
Zhang, J. Q., Craciun, G., & Shin, D. (2010). When does electronic word-of-mouth matter?
A study of consumer product reviews. Journal of Business Research, 63(12),
1336–1341. https://doi.org/10.1016/j.jbusres.2009.12.011.
Zhou, L. Y., Dawson, M. L., Herr, C. L., & Stukas, S. K. (2004). American and Chinese
college students’ predictions of people’s occupations, housework responsibilities, and
hobbies as a function of cultural and gender influences. Sex Roles, 50(7–8), 547–563.
Zhou, S., & Guo, B. (2015). The interactive effect of review rating and text sentiment on review
helpfulness, Vol. 239. Springer Verlag.
Zhu, L., Yin, G., & He, W. (2014). Is this opinion leader’s review useful? Peripheral cues
for online review helpfulness. Journal of Electronic Commerce Research, 15(4),
267–280.

Design for the pricing strategy of return-freight insurance based on online product reviews

Geng S, Li W, Qu X, Chen L, (2017), Design for the pricing strategy of return-freight insurance based on online product reviews, Electronic Commerce Research and ApplicationsVolume 25, September–October 2017, Pages 16-28

https://www.sciencedirect.com/science/article/pii/S156742231730039X

Mots clés : Assurance retour de fret, Avis de produit en ligne, Incertitude sur l’ajustement du produit, Politique de retour

Résumé : Pour résoudre les litiges liés aux achats en ligne avec le retour des produits, certaines compagnies d’assurance ont développé un nouveau type d’assurance appelé assurance retour-fret pour compenser la perte de frais de retour par les consommateurs. La détermination traditionnelle des primes d’assurance n’a pas complètement fusionné tous les facteurs de commerce électronique, tels que l’incertitude de l’ajustement des produits des achats en ligne, qui pourrait affecter à la fois la demande d’assurance et la quantité de retour. Sur la base de ces caractéristiques, nous développons un modèle de maximisation des bénéfices en termes de certains paramètres de réaction du marché, en particulier l’incertitude de l’ajustement du produit, et calculons la stratégie de tarification optimale, y compris la prime d’assurance et la compensation. En utilisant la théorie des perspectives, nous expliquons pourquoi les avis de produits en ligne pourrait influencer le comportement d’aversion au risque des demandeurs d’assurance dans la situation du commerce électronique. Ensuite, nous résolvons pour la prime et la compensation raisonnables accordées aux avis de produits en ligne du point de vue de la compagnie d’assurance et obtenons un certain nombre de directives managériales pour utiliser les variables de marketing et de stratégie opérationnelle pour influencer ces paramètres de réaction afin d’obtenir le maximum d’avantages du marché. Il est intéressant de noter que lorsque la sensibilité des consommateurs à l’incertitude sur l’ajustement du produit est modérée, une augmentation de l’incertitude sur l’ajustement du produit déplace la prime d’assurance et la compensation dans la direction opposée.

Grandes lignes :

  • Assurance de retour de fret, qui compense la perte de frais de retour de produit en ligne.
  • L’incertitude liée à l’ajustement du produit doit être prise en compte lors de l’analyse de la stratégie de tarification de l’assurance retour-fret.
  • La relation entre la prime d’assurance retour-fret et l’incertitude sur l’ajustement du produit n’est pas une corrélation positive.
  • Le bénéfice de l’assureur n’augmente pas toujours à mesure que la prime d’assurance retour-fret augmente.
  • L’aléa moral doit être considéré comme une contrainte importante dans la conception d’une stratégie de tarification d’assurance.

Banjo, S., 2013. Rampant returns plague e-retailers. Wall Street J.
Barberis, Nicholas C., 2013. Thirty years of prospect theory in economics: a review
and assessment. J. Econ. Perspect. 27 (1), 173–196.
Barseghyan, Levon, Molinari, Francesca, O’Donoghue, Ted, Teitelbaum, Joshua C.,

  1. The nature of risk preferences: evidence from insurance choices. Am.
    Econ. Rev. 103 (6), 2499–2529.
    Benartzi, Shlomo, Previtero, Alessandro, Thaler, Richard H., 2011. Annuitization
    puzzles. J. Econ. Perspect. 25 (4), 143–164.
    Chen, Yubo, Xie, Jinhong, 2008. Online consumer review: word-of-mouth as a new
    element of marketing communication mix. Manage. Sci. 54 (3), 477–491.
    Cox, Donald F., Rich, Stuart U., 1964. Perceived risk and consumer decision-making:
    the case of telephone shopping. J. Mark. Res. 1 (4), 32–39.
    De Roover, Florence Edler, 1945. Early examples of marine insurance. J. Econ. Hist. 5
    (02), 172–200.
    Dellarocas, Chrysanthos, 2003. The digitization of word of mouth: promise and
    challenges of online feedback mechanisms. Manage. Sci. 49 (10), 1407–1424.
    Dellarocas, Chrysanthos, 2006. Strategic manipulation of internet opinion forums:
    Implications for consumers and firms. Manage. Sci. 52 (10), 1577–1593.
    Dellarocas, Chrysanthos, Wood, Charles A., 2008. The sound of silence in online
    feedback: Estimating trading risks in the presence of reporting bias. Manage.
    Sci. 54 (3), 460–476.
    Dimoka, Angelika, Yili, Hong, Pavlou, Paul A., 2012. ‘On product uncertainty in
    online markets: theory and evidence’, MIS Q. 36.
    S. Geng et al. / Electronic Commerce Research and Applications 25 (2017) 16–28 27
    The Economist, 2013. ‘Return to santa’, The Economist.
    Edwards, Jeffrey R., Parry, Mark E., 1993. On the use of polynomial regression
    equations as an alternative to difference scores in organizational research. Acad.
    Manag. J. 36 (6), 1577–1613.
    Feyen, Erik, Lester, Rodney R., Roberto De Rezende Rocha, 2011. ‘What drives the
    development of the insurance sector? An empirical analysis based on a panel of
    developed and developing countries’, World Bank Policy Research Working
    Paper Series.
    Geng, Shidao, Wenli, Li, Hao, Chen, 2017. Complimentary return-freight insurance
    as quality signals a new return policy in e-commerce. In: ‘Proceedings of the
    50th Hawaii International Conference on System Sciences’.
    Gu, Bin, Ye, Qiang, 2014. First step in social media: measuring the influence of
    online management responses on customer satisfaction. Prod. Oper. Manage. 23
    (4), 570–582.
    Gupta, Sumeet, Kim, Hee-Woong, 2010. Value-driven internet shopping: the mental
    accounting theory perspective. Psychol. Market. 27 (1), 13–35.
    Hong, Yili, Pavlou, Paul A., 2014. Product fit uncertainty in online markets: nature,
    effects, and antecedents. Inf. Syst. Res. 25 (2), 328–344.
    Hu, Nan, Bose, Indranil, Koh, Noi Sian, Liu, Ling, 2012. Manipulation of online
    reviews: an analysis of ratings, readability, and sentiments. Decis. Support Syst.
    52 (3), 674–684.
    Hu, Nan, Zhang, Jie, Pavlou, Paul A., 2009. Overcoming the j-shaped distribution of
    product reviews. Commun. ACM 52 (10), 144–147.
    Hu, Wei-Yin, Scott, Jason S., 2007. Behavioral obstacles in the annuity market. Finan.
    Anal. J. 63 (6), 71–82.
    John, A.H., 1958. The london assurance company and the marine insurance market
    of the eighteenth century. Economica 25 (98), 126–141.
    Kahneman, Daniel, Tversky, Amos, 1979. Prospect theory: an analysis of decision
    under risk. Econometrica 47 (2), 263–291.
    Keane, Michael, Stavrunova, Olena, 2016. Adverse selection, moral hazard and the
    demand for medigap insurance. J. Econometrics 190 (1), 62–78.
    Kim, Hee-Woong, Yunjie, Xu, Gupta, Sumeet, 2012. Which is more important in
    internet shopping, perceived price or trust? Electron. Commer. Res. Appl. 11 (3),
    241–252.
    Kim, Youngsoo, Krishnan, Ramayya, 2015. On product-level uncertainty and
    online purchase behavior: an empirical analysis. Manage. Sci. 61 (10), 2449–
    2467.
    Kwark, Young, Chen, Jianqing, Raghunathan, Srinivasan, 2014. Online product
    reviews: implications for retailers and competing manufacturers. Inf. Syst. Res.
    25 (1), 93–110.
    Lawton, Christopher, 2008. The war on returns. Wall Street J. 8 (1).
    Li, Xinxin, Hitt, Lorin M., 2008. Self-selection and information role of online product
    reviews. Inf. Syst. Res. 19 (4), 456–474.
    Li, Yongjian, Lei, Xu., Li, Dahui, 2013. Examining relationships between the return
    policy, product quality, and pricing strategy in online direct selling. Int. J. Prod.
    Econ. 144 (2), 451–460.
    Lutz, Nancy A., 1989. Warranties as signals under consumer moral hazard. RAND J.
    Econ. 20 (2), 239–255.
    Mayzlin, Dina, 2006. Promotional chat on the internet. Market. Sci. 25 (2), 155–163.
    Minnema, Alec, Tammo, H.A., Bijmolt, Sonja Gensler, Thorsten Wiesel, 2016. To
    keep or not to keep: Effects of online customer reviews on product returns, J.
    Retailing, p. forthcoming.
    Mukhopadhyay, Samar K., Setoputro, Robert, 2005. Optimal return policy and
    modular design for build-to-order products. J. Oper. Manage. 23 (5), 496–506.
    Padmanabhan, V., Png, I.P.L., 1997. Manufacturer’s returns policies and retail
    competition. Market. Sci. 16 (1), 81–94.
    Roselius, Ted, 1971. Consumer rankings of risk reduction methods. J. Market. 35 (1),
    56–61.
    Sahoo, Nachiketa, Chrysanthos Dellarocas, Shuba Srinivasan, 2016. The impact of
    online product reviews on product returns, MSI working paper series.
    Shulman, Jeffrey D., Coughlan, Anne T., Canan Savaskan, R., 2010. Optimal reverse
    channel structure for consumer product returns. Market. Sci. 29 (6), 1071–1085.
    Sydnor, Justin, 2010. (over) insuring modest risks. Am. Econ. J. 2 (4), 177–199.
    Tsay, Andy A., Agrawal, Narendra, 2000. Channel dynamics under price and service
    competition. Manuf. Service Oper. Manage. 2 (4), 372–391.
    Tversky, Amos, Kahneman, Daniel, 1992. Advances in prospect theory: cumulative
    representation of uncertainty. J. Risk Uncertainty 5 (4), 297–323.
    Yang, Shuang, 2012. Customers’cognition value and analysis of return freight
    insurance. J. Insurance Professional College 26 (3), 21–23.
    Zhang, Dayong, Cai, Jing, Dickinson, David G., Kutan, Ali M., 2016. Non-performing
    loans, moral hazard and regulation of the chinese commercial banking system.
    J. Banking Finance 63, 48–60.
    Zhang, Meimei, Hu, Hongwei, 2013. Research on price model of back freight risk
    based on the svm. Soft Sci. 27 (7), 128–132.

A picture is worth a thousand words: Translating product reviews into a product positioning map

Moon S, Kamakura W, (2017), A picture is worth a thousand words: Translating product reviews into a product positioning map, International Journal of Research in Marketing, Volume 34, Issue 1, March 2017, Pages 265-285

https://www.sciencedirect.com/science/article/abs/pii/S016781161630074X

Mots clés : Avis de produits en ligne, Carte de positionnement du produit, Exploration de texte, Psychométrie, Découvrir les produits, Segmentation des consommateurs

Résumé : Les avis sur les produits deviennent omniprésents sur le Web, ce qui représente une riche source d’informations pour les consommateurs sur un large éventail de catégories de produits. Surtout, un avis de produit reflète non seulement la perception et la préférence pour un produit, mais aussi l’acuité, le parti pris et le style d’écriture de la critique. Cet aspect a été négligé dans des études antérieures qui ont tiré des conclusions sur les marques à partir des critiques de produits en ligne. Notre cadre combine des techniques d’exploration de texte basées sur l’apprentissage d’ontologie et des techniques psychométriques pour traduire les critiques de produits en ligne en une carte de positionnement de produit, tout en tenant compte des réponses idiosyncrasiques et des styles d’écriture des critiques individuels ou d’un nombre gérable de groupes de critiques (c.-à-d., Les méta-critiques). Nos illustrations empiriques utilisant des critiques de vins et d’hôtels montrent qu’une revue de produit révèle des informations sur le critique (pour l’exemple de vin avec un petit nombre de critiques d’experts) ou le méta-critique (pour l’exemple d’hôtel avec un nombre énorme de critiques réduit à un nombre gérable de méta-évaluateurs), ainsi que sur le produit examiné.

Grandes lignes :

  • Les avis sur les produits deviennent omniprésents sur le Web.
  • Un avis de produit reflète non seulement la perception et la préférence pour un produit, mais aussi l’acuité, le parti pris et le style d’écriture de la critique.

Aggarwal, P., Vaidyanathan, R., & Venkatesh, A. (2009). Using lexical semantic analysis to derive online brand positions: An application to retail marketing research.
Journal of Retailing, 85(2), 145–158.
Alba, J. W., & Hutchinson, J. W. (1987). Dimensions of consumer expertise. Journal of Consumer Research, 13(4), 411–454.
Anderson, C. K. (2012). The impact of social media on lodging performance. Cornell Hospitality Report, 12(15), 6–11.
Archak, N., Ghose, A., & Ipeirotis, P. G. (2011). Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), 1485–1509.
Buitelaar, P., Cimiano, P., & Magnini, B. (2005). Ontology learning from text: Methods, evaluation and applications. IOS Press.
Camacho, N., De Jong, M., & Stremersch, S. (2014). The effect of customer empowerment on adherence to expert advice. International Journal of Research in Marketing,
31(3), 293–308.
Carroll, J. D., & Green, P. E. (1997). Psychometric methods in marketing research: Part II. Multidimensional scaling. Journal of Marketing Research, 34(May), 193–204.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(August), 345–354.
Cimiano, P. (2006). Ontology learning and population from text: Algorithms, valuation and applications. Germany: Springer.
Decker, R., & Trusov, M. (2010). Estimating aggregate consumer preferences from online product reviews. International Journal of Research in Marketing, 27(4),
293–307.
DeSarbo, W. S., Park, J., & Rao, V. R. (2011). Deriving joint space positioning maps from consumer preference ratings. Marketing Letters, 22(1), 1–14.
Faure, C., & Natter, M. (2010). New metrics for evaluating preference maps. International Journal of Research in Marketing, 27(3), 261–270.
Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press.
Ghose, A., Ipeirotis, P. G., & Li, B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing
Science, 31(3), 493–520.
Holbrook, M. B., Lacher, K. T., & LaTour, M. S. (2006). Audience judgments as the potential missing link between expert judgments and audience appeal: An illustration
based on musical recordings of “My Funny Valentine,”. Journal of the Academy of Marketing Science, 34(1), 8–18.
Kamakura, W. A., & Wedel, M. (2000). Factor analysis and missing data. Journal of Marketing Research, 37(4), 490–498.
Kamakura, W. A., Basuroy, S., & Boatwright, P. (2006). Is silence golden? An inquiry into the meaning of silence in professional product evaluations. Quantitative
Marketing and Economics, 4(2), 119–141.
Kostyra, D. S., Reiner, J., Natter, M., & Klapper, D. (2016). Decomposing the effects of online customer reviews on brand, price, and product attributes. International
Journal of Research in Marketing, 33(1), 11–26.
Lau, K. -N., Lee, K. -H., Lam, P. -Y., & Ho, Y. (2001). Web-site marketing: For the travel-and-tourism industry. The Cornell Hotel and Restaurant Administration Quarterly,
42(6), 55–62.
Lawrence, R. D., Almasi, G. S., & Rushmeier, H. E. (1999). A scalable parallel algorithm for self-organizing maps with applications to sparse data mining problems. Data
Mining and Knowledge Discovery, 3(2), 171–195.
Lee, T. Y., & Bradlow, E. T. (2011). Automated marketing research using online customer reviews. Journal of Marketing Research, 48(5), 881–894.
Liebermann, Y., & Flint-Goor, A. (1996). Message strategy by product-class type: A matching model. International Journal of Research in Marketing, 13(3), 237–249.
Lilien, G., & Rangaswamy, A. (2006). Marketing engineering (Revised 2nd ed.). Bloomington, IN: Trafford Publishing.
Liu, Y. (2006). Word-of-mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74–89.
Maedche, A. (2002). Ontology learning for the semantic web. The Kluwer international series in engineering and computer science. New York: Springer Science+
Business Media.
Moon, S., Park, Y., & Kim, Y. S. (2014). The impact of text product reviews on sales. European Journal of Marketing, 48(11/12), 2176–2197.
Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business: Market structure surveillance through text mining. Marketing Science, 31(3),
521–543.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.
Pazienza, M., Pennacchiotti, M., & Zanzotto, F. M. (2005). Terminology extraction: An analysis of linguistic and statistical approaches. Knolwedge mining. Of the series
studies in fuzziness and soft computing, Vol. 185. (pp. 255–279).
Peck, J., & Childers, T. L. (2003). Individual differences in haptic information processing: The “need for touch” scale. Journal of Consumer Research, 30(3), 430–442.
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
Staab, S., & Studer, R. (2004). Handbook on ontologies. International handbooks on information systems. Springer.
Stone, H., & Sidel, J. L. (2004). Sensory evaluation practices (3rd ed.). Food science and technology, international series. California: Elsevier Academic Press.
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation. Journal of
Marketing Research, 51(August), 463–479.
Wedel, M., & Kamakura, W. A. (2001). Factor analysis with mixed observed and latent variables in the exponential family. Psychometrika, 66(4), 515–530.

A machine learning approach to product review disambiguation based on function, form and behavior classification

Singh A, Tucker C (2017) A machine learning approach to product review disambiguation based on function, form and behavior classification, Decision Support Systems, Volume 97, May 2017, Pages 81-91

https://www.sciencedirect.com/science/article/pii/S0167923617300477

Mots clés : Apprentissage automatique, Extraction d’attribut de produit, Exploration de texte, Avis sur les produits, La conception des produits

Résumé : Les évaluations de produits en ligne se sont révélées être une source d’informations viable pour aider les clients à prendre des décisions d’achat éclairées. Dans de nombreux cas, les utilisateurs de plateformes d’achat en ligne ont la possibilité d’évaluer les produits sur une échelle numérique et de fournir également des commentaires textuels concernant un produit acheté. Au-delà de l’utilisation de plateformes de revue de produits en ligne comme systèmes d’aide à la décision client, cette source de données riche en informations pourrait également aider les concepteurs qui cherchent à augmenter les chances de succès de leurs produits sur le marché grâce à une meilleure compréhension des besoins du marché. Cependant, la taille et la complexité croissantes des produits sur le marché rendent difficile l’analyse manuelle de ces données. Les informations obtenues à partir de ces sources, si elles ne sont pas exploitées correctement, risquent de déformer le véritable succès / échec d’un. L’objectif de cet article est triple: i) proposer une approche d’apprentissage automatique qui dissipe les commentaires des clients en ligne en les classant en l’une des trois caractéristiques directes du produit (c.-à-d. La forme ,fonction ou comportement ) et deux caractéristiques indirectes du produit (c.-à-d. service et autre ), ii) pour découvrir l’ algorithme d’apprentissage automatique qui donne les résultats les plus élevés et les plus généralisables pour atteindre l’objectif i) et iii) pour quantifier la corrélation entre les évaluations de produits et les évaluations directes et les caractéristiques indirectes du produit. Une étude de cas impliquant des données d’examen pour des produits extraits de sites Web de commerce électronique est présentée pour démontrer la validité de la méthode proposée. Une approche de validation multicouche est présentée pour explorer la généralisation de la méthode proposée. Les contributions scientifiques de ce travail ont le potentiel de transformer la manière dont les concepteurs de produits et les clients intègrent les avis sur les produits dans leurs processus décisionnels en quantifiant la relation entre les avis sur les produits et les caractéristiques des produits.

Grandes lignes :

  • Les évaluations de produits en ligne sont une source d’informations viable pour aider les clients à prendre des décisions d’achat.
  • Elles peuvent aider les concepteurs qui cherchent à augmenter les chances de succès de leurs produits.
  • Classification par apprentissage automatique de la forme, de la fonction et du comportement du produit
  • Précisions de classification d’apprentissage automatique de plus de 82% pour le modèle de base
  • Corrélation entre les évaluations de produits et la forme, la fonction et le comportement des produits
  • La corrélation entre la forme des produits et les notes des produits a donné une valeur de 0,934

[1] N.M.A. Al-Othman, The relationship between online reading rates and performance
on proficiency tests, The Reading Matrix 3 (2003).
[2] N. Archak, A. Ghose, P.G. Ipeirotis, Deriving the pricing power of product features by
mining consumer reviews, Management Science 57 (2011) 1485–1509.
[3] K.J. Arrow, Social Choice and Individual Values, Yale University Press, 2012.
[4] S. Asur, B.A. Huberman, Predicting the future with social media, Web Intelligence
and Intelligent Agent Technology (WI-IAT)2010 IEEE/WIC/ACM International Conference on. IEEE 2010, pp. 492–499.
[5] X. Bai, Predicting consumer sentiments from online text, Decision Support Systems
50 (2011) 732–742.
[6] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res. 3
(2003) 993–1022.
[7] A. Brew, D. Greene, P. Cunningham, Using Crowdsourcing and Active Learning to
Track Sentiment in Online Media, in: Proceedings of the 2010 Conference on ECAI
2010: 19th European Conference on Artificial Intelligence, IOS Press, Amsterdam,
The Netherlands, The Netherlands, 2010 145–150.
[8] K. Dave, S. Lawrence, D.M. Pennock, Mining the peanut gallery: opinion extraction
and semantic classification of product reviews, Proceedings of the 12th International Conference on World Wide Web, ACM 2003, pp. 519–528.
[9] T. Fawcett, ROC graphs: notes and practical considerations for researchers, Mach.
Learn. 31 (2004) 1–38.
[10] O. Feiguina, G. Lapalme, Query-based summarization of customer reviews, Advances
in Artificial Intelligence, Springer 2007, pp. 452–463.
[11] C. Forman, A. Ghose, B. Wiesenfeld, Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets, Inf. Syst.
Res. 19 (2008) 291–313.
[12] M. Galkin, D. Mouromtsev, S. Auer, Identifying web tables: supporting a neglected
type of content on the web, International Conference on Knowledge Engineering
and the Semantic Web, Springer 2015, pp. 48–62.
[13] R. Ghani, K. Probst, Y. Liu, M. Krema, A. Fano, Text mining for product attribute extraction, ACM SIGKDD Explorations Newsletter 8 (2006) 41–48.
[14] A. Ghose, P.G. Ipeirotis, Designing novel review ranking systems: predicting the usefulness and impact of reviews, Proceedings of the Ninth International Conference on
Electronic Commerce, ACM 2007, pp. 303–310.
[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA
data mining software: an update, ACM SIGKDD Explorations Newsletter 11 (2009)
10–18.
[16] G.A. Hazelrigg, The implications of Arrow’s impossibility theorem on approaches to
optimal engineering design, J. Mech. Des. 118 (1996) 161–164.
[17] B. He, C. Macdonald, J. He, I. Ounis, An effective statistical approach to blog post
opinion retrieval, Proceedings of the 17th ACM Conference on Information and
Knowledge Management, ACM 2008, pp. 1063–1072.
[18] S.S. Htay, K.T. Lynn, Extracting product features and opinion words using pattern
knowledge in customer reviews, Sci. World J. 2013 (2013).
[19] M. Hu, B. Liu, Mining opinion features in customer reviews, AAAI 2004, pp. 755–760.
[20] N. Hu, I. Bose, N.S. Koh, L. Liu, Manipulation of online reviews: an analysis of ratings,
readability, and sentiments, Decis. Support. Syst. 52 (2012) 674–684, http://dx.doi.
org/10.1016/j.dss.2011.11.002.
[21] Import.io|Web Data Platform & Free Web Scraping Tool [WWW Document], n.d.
Import.io. URL https://www.import.io/ (accessed 10.10.16).
[22] Y. Jiang, J. Shang, Y. Liu, Maximizing customer satisfaction through an online recommendation system: a novel associative classification model, Decis. Support Systems
48 (2010) 470–479.
[23] S.W. Kang, C. Tucker, An automated approach to quantifying functional interactions
by mining large-scale product specification data, J. Eng. Des. 0 (2015) 1–24, http://
dx.doi.org/10.1080/09544828.2015.1083539.
[24] S.-M. Kim, P. Pantel, T. Chklovski, M. Pennacchiotti, Automatically assessing review
helpfulness, Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics 2006, pp. 423–430.
[25] S. Kotsiantis, Supervised Machine Learning: A Review of Classification Techniques,
2007.
[26] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical data,
Biometrics (1977) 159–174.
[27] R.Y. Lau, C. Li, S.S. Liao, Social analytics: learning fuzzy product ontologies for aspectoriented sentiment analysis, Decis. Support. Syst. 65 (2014) 80–94.
[28] A.J. Lee, F.-C. Yang, C.-H. Chen, C.-S. Wang, C.-Y. Sun, Mining perceptual maps from
consumer reviews, Decis. Support Syst. 82 (2016) 12–25.
[29] A.J.T. Lee, F.-C. Yang, C.-H. Chen, C.-S. Wang, C.-Y. Sun, Mining perceptual maps from
consumer reviews, Decis. Support. Syst. 82 (2016) 12–25, http://dx.doi.org/10.1016/
j.dss.2015.11.002.
[30] N. Lei, S.K. Moon, A decision support system for market-driven product positioning
and design, Decis. Support. Syst. 69 (2015) 82–91, http://dx.doi.org/10.1016/j.dss.
2014.11.010.
[31] B. Liu, M. Hu, J. Cheng, Opinion Observer: Analyzing and Comparing Opinions on the
Web, Proceedings of the 14th International Conference on World Wide WebACM
2005, pp. 342–351.
[32] H.-M. Lu, Detecting short-term cyclical topic dynamics in the user-generated content and news, Decis. Support. Syst. 70 (2015) 1–14.
[33] S.M. Mudambi, D. Schuff, What Makes a Helpful Review? A Study of Customer Reviews on Amazon.com (SSRN Scholarly Paper No. ID 2175066), Social Science Research Network, Rochester, NY, 2010.
[34] D.L. Olson, D. Delen, Y. Meng, Comparative analysis of data mining methods for
bankruptcy prediction, Decis. Support. Syst. 52 (2012) 464–473.
[35] M.F. Porter, An algorithm for suffix stripping, Program 14 (1980) 130–137.
[36] A. Reyes, P. Rosso, Making objective decisions from subjective data: detecting irony
in customer reviews, Decis. Support. Syst. 53 (2012) 754–760.
[37] S. Rose, N. Hair, M. Clark, Online customer experience: a review of the business-toconsumer online purchase context, Int. J. Manag. Rev. 13 (2011) 24–39.
[38] M.A. Rosenman, J.S. Gero, Purpose and function in design: from the socio-cultural to
the techno-physical, Des. Stud. 19 (1998) 161–186.
[39] N. Salkind, Encyclopedia of Measurement and Statistics, SAGE Publications, Inc.,
2455 Teller Road, Thousand Oaks California 91320 United States, 2007.
[40] A.S. Singh, C.S. Tucker, Investigating the heterogeneity of product feature preferences mined using online product data streams, ASME 2015 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2015 (p. V02BT03A020-
V02BT03A020).
[41] S. Tuarob, C.S. Tucker, Quantifying product favorability and extracting notable product features using large scale social media data, J. Comput. Inf. Sci. Eng. 15 (2015)
031003.
[42] S. Tuarob, C.S. Tucker, Automated discovery of lead users and latent product features
by mining large scale social media networks, J. Mech. Des. 137 (2015) 071402.
[43] C. Tucker, H. Kim, Predicting emerging product design trend by mining publicly
available customer review data, DS 68-6: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society Through Engineering
Design, Vol. 6: Design Information and Knowledge, Lyngby/Copenhagen, Denmark,
15.-19.08. 2011, 2011.
[44] L. Wang, B.D. Youn, S. Azarm, P.K. Kannan, Customer-driven product design selection using web based user-generated content, in: ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2011 405–419.
[45] Y. Yu, W. Duan, Q. Cao, The impact of social and conventional media on firm equity
value: a sentiment analysis approach, Decis. Support. Syst. 55 (2013) 919–926.
[46] L. Zhuang, F. Jing, X.-Y. Zhu, Movie review mining and summarization, Proceedings
of the 15th ACM International Conference on Information and Knowledge Management, ACM 2006, pp. 43–50.