Customer retention management processes: A quantitative study

Lawrence Ang & Francis Buttle (2006): Customer retention management processes, European Journal of Marketing, Vol. 40 Issue 1/2, p83-99. 17p. DOI: 10.1108/03090560610637329

Keywords Customer retention, Complaints

Ang, Lawrence and Buttle Francis explain the current state of importance given to customer retention and explore the management processes, businesses associate with. They examine the impact of customer retention planning, budgeting and accountability, and a documented complaints-handling process. They compare the significance of having a customer retention planning process and a documented complaints-handling process. They point to the existence of the latter as the strongest reason behind great customer retention.

  • At the start, authors mention customer retention goals are common in businesses with a focus on relationship marketing. They explore the current customer retention approach of different types of businesses. It is acknowledged that customer retention plays an important role in profit.
  • They conclude that a documented complaints-handling process enables businesses to improve problem resolution, and better identify trends and causes of complaints. Excellence at these processes improves customer’s residual value and prevent systemic or repetitive complaints.

Initially, they state that even a small increase in customer retention rate can improve customer net present value up to 95% in different types of businesses. Additionally, it is recognized that customer retention has more impact on the value of a business than changes in discounts rates or cost of capital. Industrial and service markets rely more heavily on customer management, being business-to-business relationships the most stable and lasting ones. Moreover, an excellent customer retention can also decrease customer replacement cost.

They identify that precise planning processes which involve obligations from executives and budgeting are linked to superior business performance, and over half of businesses believe customer retention to be more important than acquisition. They express that bad managing of customer churn leads to decrease in the business’ value. In addition, writers express that complainants whose issues were resolved have higher satisfaction rates and are less-likely to switch.

It is revealed by the writers that, despite the evidence of its importance, not enough attention is given to developing a proper customer retention plan. It is suggested that businesses either do not think about customer profitability or are unable to properly measure it. Conventional management approaches tell it is necessary to build a customer retention plan, implement a budget and provide accountability. Nevertheless, the authors did not find enough evidence to support this claim.

Finally, it is concluded that excellent customer retention is linked to the presence of a documented customer complaints-handling process, improving not only the customer retention but employee performance and business’ processes as well. A documented complaints-management process enables organizations to improve their ability to resolve customers’ disputes. It enables companies to identify trends more accurately and find factors generating problems. Organizations with well-established documented complaints-handling processes have a tendency to have explicit customer retention plans, use a formal switching model to predict churn, have an employee in charge of customer retention and look for signals of imminent customer defection yet, none of these variables are statistically significant for exceptional customer retention performance.

In conclusion, it is explained that customer retention plan, budget and accountability are not linked to a great customer retention, unlike common management approaches might suggest. Only documented complaints-handling processes showed a strong correlation with low customer churn.


Aspinall, E., Nancarrow, C. and Stone, M. (2001), “The meaning and measurement of customer retention”, Journal of Targeting, Measurement and Analysis for Marketing, Vol. 10 No. 1, pp. 79-87.

Berry, L.L. (1983), “Relationship marketing”, in Berry, L.L., Shostack, G.L. and Upah, G.D. (Eds), Emerging Perspectives on Services Marketing, American Marketing Association, Chicago, IL, pp. 25-8.

Brown, S.W., Cowles, D.L. and Tuten, T.L. (1996), “Service recovery: its value and limitations as a retail strategy”, International Journal of Service Industry Management, Vol. 7 No. 5, pp. 32-46.

Buttle, F. (2004), Customer Relationship Management: Concepts and Tools, Elsevier, Oxford. Christopher, M., Payne, A. and Ballantyne, D. (1991), Relationship Marketing,

Butterworth-Heinemann, Oxford.

Coviello, N., Brodie, R.J. and Munro, H. (1997), “Understanding contemporary marketing: development of a classification scheme”, Journal of Marketing Management, Vol. 13 No. 6, pp. 501-22.

Coviello, N., Milley, R. and Marcolin, B. (2001), “Understanding IT-enabled interactivity in contemporary marketing”, Journal of Interactive Marketing, Vol. 15 No. 4, pp. 8-33.

Coviello, N.E., Brodie, R.J., Danaher, P.J. and Johnston, W.J. (2002), “How firms relate to their markets: an empirical examination of contemporary marketing practices”, Journal of Marketing, Vol. 66 No. 3, pp. 33-46.

Coyles, S. and Gorkey, T.C. (2002), “Customer retention is not enough”, McKinsey Quarterly, No. 2, pp. 80-9.

Dawkins, P.M. and Reichheld, F.F. (1990), “Customer retention as a competitive weapon”,

Directors and Board, Vol. 14, Summer, pp. 42-7.

DeSouza, G. (1992), “Designing a customer retention plan”, Journal of Business Strategy, Vol. 13 No. 2, pp. 24-8.

Dowling, G. and Uncles, M. (1997), “Do customer loyalty programs really work?”, Sloan Management Review, Vol. 38 No. 4, pp. 71-82.

Doyle, P. (2000), Value-based Marketing: Marketing Strategies for Corporate Growth and Shareholder Value, John Wiley, Chichester.

Drucker, P.F. (1973), Management: Tasks, Responsibilities, Practices, Harper & Row, New York, NY.

Evans, M. (2002), “Prevention is better than cure: redoubling the focus on customer retention”, Journal of Financial Services Marketing, Vol. 7 No. 2, pp. 186-98.

Ford, D. (1980), “The development of buyer-seller relationships in industrial markets”, European Journal of Marketing, Vol. 14 Nos 5/6, pp. 339-54.

Ford, D. (Ed.) (1997), Understanding Business Markets, 2nd ed., Dryden Press, London.

Fornell, C. and Wernerfelt, B. (1987), “Defensive marketing strategy by consumer complaint management: a theoretical analysis”, Journal of Marketing Research, Vol. 24 No. 4, pp. 337-46.

Ganesh, J., Arnold, M.J. and Reynolds, K.E. (2000), “Understanding the customer base of service providers: an examination of the differences between stayers and switchers”, Journal of Marketing, Vol. 64 No. 3, pp. 65-78.

Gordon, I. (1998), Relationship Marketing, John Wiley, Etobicoke.

Gro ̈nroos, C. (1990), “Relationship approach to marketing in service contexts: the marketing and

organizational behavior interface”, Journal of Business Research, Vol. 20 No. 4, pp. 3-11. Gro ̈nroos, C. (1991), “The marketing strategy continuum: toward a marketing concept for the

1990s”, Management Decision, Vol. 29 No. 1, pp. 7-13.

Gro ̈nroos, C. (2000), Service Management and Marketing: A Customer Relationship Management

Approach, 2nd ed., John Wiley, Chichester.

Gupta, S., Lehmann, D.R. and Stuart, J.A. (2004), “Valuing customers”, Journal of Marketing

Research, Vol. 41 No. 1, pp. 7-19.

Ha ̊kansson, H. (Ed.) (1982), International Marketing and Purchasing of Industrial Goods:

An Interaction Approach, Wiley, New York, NY.

Hart, C.W.L., Heskett, J.L. and Sasser, W.E. Jr (1990), “The profitable art of service recovery”,

Harvard Business Review, Vol. 68 No. 4, pp. 148-57.

Hofmeyr, N. and Rice, B. (2000), Commitment-led Marketing, John Wiley, New York, NY.

ISO (2004), ISO 10002: 2004(E) International Standard. Complaints Handling, 1st ed., International Organization for Standardization, Geneva.

Johnston, R. (1995), “Service failure and recovery: impact, attributes and process”, Advances in Services Marketing and Management: Research and Practice, Vol. 4, pp. 211-28

Johnston, R. (2001), “Linking complaint management to profit”, International Journal of Service Industry Management, Vol. 12 No. 1, pp. 60-9.

Keaveney, S.M. (1995), “Customer switching behavior in service industries: an exploratory study”, Journal of Marketing, Vol. 59 No. 2, pp. 71-82.

Koch, R. (1998), The 80/20 Principle: The Secret of Achieving More with Less, Century/Doubleday, New York, NY.

Kotler, P. (2003), Marketing Management, 11th ed., Prentice-Hall, Englewood Cliffs, NJ. Lindgreen, A., Davis, R., Brodie, R.J. and Buchanan-Oliver, M. (2000), “Pluralism in contemporary

marketing practices”, International Journal of Bank Marketing, Vol. 18 No. 6, pp. 294-308.

Miller, C.C. and Cardinal, L.B. (1994), “Strategic planning and firm performance: a synthesis of more than two decades of research”, Academy of Management Journal, Vol. 37 No. 6, pp. 1649-85.

Mintzberg, H. (2000), The Rise and Fall of Strategic Planning, Financial Times/Prentice-Hall, Englewood Cliffs, NJ.

Moorman, C., Zaltman, G. and Deshpande ́, R. (1992), “Relationships between providers and users of marketing research: the dynamics of trust within and between organizations”, Journal of Marketing Research, Vol. 29 No. 3, pp. 314-28.

Nyer, P.U. (2000), “An investigation into whether complaining can cause increased consumer satisfaction”, Journal of Consumer Marketing, Vol. 17 No. 1, pp. 9-19.

O’Brien, L. and Jones, C. (1995), “Do rewards really create loyalty?”, Harvard Business Review, Vol. 73 No. 3, pp. 75-82.

Oliver, R.L. (1999), “Whence consumer loyalty?”, Journal of Marketing, Vol. 63 No. 4, pp. 33-45.

Payne, A.F.T. and Frow, P. (1999), “Developing a segmented service strategy: improving measurement in relationship marketing”, Journal of Marketing Management, Vol. 15 No. 8, pp. 797-818.

Payne, A., Holt, S. and Frow, P. (2001), “Relationship value management: exploring the integration of employee, customer and shareholder value and enterprise performance models”, Journal of Marketing Management, Vol. 17 Nos 7/8, pp. 785-817.

PricewaterhouseCoopers (2002), Are They Worth it? Managing the Value of Customers in the UK Financial Services Market, London, February.

Reichheld, F.F. (1996), The Loyalty Effect: The Hidden Force behind Growth, Profits and Lasting Value, Harvard Business School Press, Boston, MA.

Sheth, J.H. and Parvatiyar, A. (1995), “The evolution of relationship marketing”, International Business Review, Vol. 4 No. 4, pp. 397-419.

Siegel, S. and Castellan, N.J. (1989), Nonparametric Statistics for Behavioral Sciences, McGraw-Hill, New York, NY.

Smith, A.K., Bolton, R.N. and Wagner, J. (1999), “A model of customer satisfaction with service encounters involving failure and recovery”, Journal of Marketing Research, Vol. 36 No. 8, pp. 356-72.

Stauss, B. and Schoeler, A. (2004), “Complaint management profitability: what do complaint managers know?”, Managing Service Quality, Vol. 14 Nos 2/3, pp. 147-56.

Stauss, B. and Seidel, W. (2004), Complaint Management: The Heart of CRM, Thomson, Mason, OH.

Stauss, B., Chojnacki, K., Decker, A. and Hoffmann, F. (2001), “Retention effects of a customer club”, International Journal of Service Industry Management, Vol. 12 No. 1, pp. 7-19.

Technical Assistance Research Program (TARP) (1979), Consumer Complaint Handling in America: Final Report, US Office of Consumer Affairs, Washington, DC.

Turnbull, P.W. and Valla, J.-P. (Eds) (1986), Strategies for International Industrial Marketing: The Management of Customer Relationships in European Industrial Markets, Croom Helm, London.

Van Ossel, G. and Stremersch, S. (1998), “Complaint management”, in Van Looey, B., Van Dierdonck, R. and Gemmel, P. (Eds), Services Management: An Integrated Approach, Financial Times/Pitman, London.

Verhoef, P.C. (2003), “Understanding the effect of customer relationship management efforts of customer retention and share of customer”, Journal of Marketing, Vol. 67 No. 4, pp. 30-46.

Weinstein, A. (2002), “Customer retention: a usage segmentation and customer value approach”, Journal of Targeting, Measurement and Analysis for Marketing, Vol. 10 No. 3, pp. 259-68.

Exploring decisive factors affecting an organization’s SaaS adoption: A case study

Wu, Wei-Wen, Lan, Lawrence W. & Lee, Yu-Ting (2011): Exploring decisive factors affecting an organization’s SaaS adoption: A case study, International Journal of Information Management, Vol. 31, Issue 6, p.556-563. 6p. DOI: 10.1016/j.ijinfomgt.2011.02.007

Keywords: Software as a Service (SaaS), Adoption, Trust, Decision Making Trial and Evaluation, Laboratory (DEMATEL)

Wu, Wei-Wen, Lan, Lawrence W. & Lee, Yu-Ting start by defining cloud services as a group of service solutions involving computing, data storage, and software available through the Internet where customers do not own or operate the service provided. The cloud process all the information given by the user to then send back its results. This model allows organizations to focus on its core business and lessens the burden of developing and maintaining complicated IT systems.

Cloud computing can be divided into three categories: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Nevertheless, SaaS is regarded as potentially the most important model for scaling IT performance. Despite this information, organizations are still hesitant to use it due to trust concerns. It is stated that SaaS has an attractive growth potential as SMEs have yet to start using SaaS extensively. Among the reasons why it is not yet widely-spread in this segment, concern about data security represents the stronger factor. Therefore, focusing on trust to highlight perceived benefits and diminish perceived risks is the approach recommended for all marketing efforts. Nonetheless, adopting new technologies or services solutions is still commonly seen as a way to improve competitiveness in an organization.

Trust plays a decisive role in the acceptance of perceived benefits and the lessening of perceived risks for this business model. This is why, the authors propose a solution framework where they treat perceived benefits and perceived risks as two different arguments in order to develop a visible cause-effect graph to aid organizations in their decision making towards SaaS. They define trust as the willingness to behave risky in uncertain situations as it is believed that expected benefits might overcome the negative aspects.

Although trust is a main driver for the accomplishment of any e-commerce, perceived risks, technical and subjective, act as barriers for the adoption of this service, while perceived benefits represent a motivation for adoption. The study aims to select the most important set of perceived benefits and perceived risks for SaaS adoption using the DEMATEL model to conduct a cause-effect analysis. To do so, they use a case study centering on a Taiwanese technological company. Out of all the factors studied, it is concluded that an easy and fast deployment of the service, and its potential in the future are the most relevant benefits to business. On the other hand, data locality and security, and authentication and authorization are mentioned as the most important perceived risks preventing adoption. These perceived risks are, however, subjective rather than technical, as organizations commonly dislike the lack of ownership and control on cloud computing deployment.

These results tell us that SaaS businesses should emphasize the subjective but strategical aspects of delegating security control to SaaS. The writers divide two types of SaaS customers: the organizations focusing on perceived benefits, where SaaS vendors can focus on their strategical competitive advantage, and the organizations focusing on perceived risks, where vendors should reduce security concerns by communicating best practices of successful businesses using SaaS, and expert recommendations.



Catteddu, D., & Hogben, G. (2009). Cloud computing: Benefits, risks and recom- mendations for information security. European Network and Information Security Agency (ENISA), 1–125.

Chang, B., Chang, C. W., & Wu, C. H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850–1858.

Chen, J. K., & Chen, I. S. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications, 37(3), 1981–1990.

Cho, S. E. (2010). Perceived risks and customer needs of geographical accessibil- ity in electronic commerce. Electronic Commerce Research and Applications, 9(6), 495–506.

Crespo, A. H., & del Bosque, I. R. (2010). The influence of the commercial features of the Internet on the adoption of e-commerce by consumers. Electronic Commerce Research and Applications, 9(6), 562–575.

Davis, F. D. (1986). A technology acceptance model for empirically testing new end- user information systems: Theory and results. Doctoral dissertation. Cambridge, MA: Sloan School of Management, Massachusetts Institute of Technology.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.

Deutsch, M. (1962). Cooperation and trust: Some theoretical notes. In M. R. Jones (Ed.), Nebrasca symposium on motivation (pp. 275–318). Nebrasca: University Press.

Elahi, S., & Hassanzadeh, A. (2009). A framework for evaluating electronic commerce adoption in Iranian companies. International Journal of Information Management, 29(1), 27–36.

Evans, A. M., & Krueger, J. I. (2010). Elements of trust: Risk and perspective-taking. Journal of Experimental Social Psychology, doi:10.1016/j.jesp.2010.08.007

Feuerlicht, G. (2010). Next generation SOA: Can SOA survive cloud computing? In V. Snasel, V. Snasel, et al. (Eds.), Advances in intelligent web mastering – 2, AISC 67 (pp. 19–29).

Fontela, E., & Gabus, A. (1976). The DEMATEL observer, DEMATEL 1976 report. Geneva, Switzerland: BATTELLE Institute, Geneva Research Center.

Gabus, A., & Fontela, E. (1973). Perceptions of the World Problematique: Communi- cation Procedure. In Communicating with those bearing collective responsibility (DEMATEL Report No. 1). Geneva, Switzerland: BATTELLE Institute, Geneva Research Centre.

Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Geneva, Switzerland: BATTELLE Institute, Geneva Research Centre.

Goscinski, A., & Brock, M. (2010). Toward dynamic and attribute based publica- tion, discovery and selection for cloud computing. Future Generation Computer Systems, doi:10.1016/j.future.2010.03.009

Ho, W. R. J., Tsai, C. L., Tzeng, G. H., & Fang, S. K. (2011). Combined DEMATEL technique with a novel MCDM model for exploring portfolio selection based on CAPM. Expert Systems with Applications, 38(1), 16–25.

Hu, H. Y., Lee, Y. C., Yen, T. M., & Tsai, C. H. (2009). Using BPNN and DEMATEL to modify importance–performance analysis model—A study of the computer industry. Expert Systems with Applications, 36(6), 9969–9979.

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755.

Lin, Ch. J., & Wu, W. W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert Systems with Applications, 34(1), 205–213. Lopez-Nicolas, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of

advanced mobile services acceptance: Contributions from TAM and diffusion

theory models. Information & Management, 45(6), 359–364.

Mehrtens, J., Cragg, P. B., & Mills, A. M. (2001). A model of Internet adoption by SMEs.

Information & Management, 39(3), 165–176.

Misra, S. C., & Mondal, A. (2010). Identification of a company’s suitability for the

adoption of cloud computing and modelling its corresponding return on invest-

ment. Mathematical and Computer Modelling, doi:10.1016/j.mcm.2010.03.037 Shen, Y. C., Lin, G. T. R., & Tzeng, G. H. (2011). Combined DEMATEL techniques with novel MCDM for the organic light emitting diode technology selection. Expert

Systems with Applications, 38(3), 1468–1481.

Shieh, J. I., Wu, H. H., & Huang, K. K. (2010). A DEMATEL method in identifying

key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277–282.

Slovic, P. (1992). Perception of risk: Reflections on the psychometric paradigm. In S. Krimsky, & D. Golding (Eds.), Social theories of risk (pp. 117–152). New York: Praeger.

Subashini, S., & Kavitha, V. (2010). A survey on security issues in service deliv- ery models of cloud computing. Journal of Network and Computer Applications, doi:10.1016/j.jnca.2010.07.006

Sultan, N. (2010). Cloud computing for education: A new dawn? International Journal of Information Management, 30(2), 109–116.

Tarafdar, M., & Vaidya, S. D. (2006). Challenges in the adoption of E-Commerce technologies in India: The role of organizational factors. International Journal of Information Management, 26(6), 428–441.

Tsai, W. H., & Chou, W. C. (2009). Selecting management systems for sustainable development in SMEs: A novel hybrid model based on DEMATEL, ANP, and ZOGP. Expert Systems with Applications, 36(2), 1444–1458.

Tseng, M. L. (2009). A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert Systems with Applica- tions, 36(4), 7738–7748.

Tzeng, G. H., Chiang, C. H., & Li, C. W. (2007). Evaluating intertwined effects in e- learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32(4), 1028–1044.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.

Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. Wu, H. H., Chen, H. K., & Shieh, J. I. (2010). Evaluating performance criteria of Employ- ment Service Outreach Program personnel by DEMATEL method. Expert Systems

with Applications, 37(7), 5219–5223.

Wu, F., Li, H. H., & Kuo, Y. H. (2010). Reputation evaluation for choosing a trustworthy

counterparty in C2C e-commerce. Electronic Commerce Research and Applications,


Wu, W. W., & Lee, Y. T. (2007). Developing global managers’ competencies

using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499–507.

Wu, W. W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828–835. Zhou, Q., Huang, W., & Zhang, Y. (2011). Identifying critical success factors in

emergency management using a fuzzy DEMATEL method. Safety Science, 49(2), 243–252.

Integrating marketing communications: new findings, new lessons and new ideas

Rajeev Batra and Kevin Lane Keller (2016): Integrating Marketing Communications: New Findings, New Lessons, and New Ideas. Journal of Marketing, Vol. 80 Issue 6, p122-145. 24p. DOI:

Keywords: marketing communications, marketing integration, integrated marketing communications, traditional media, digital media

New media has impacted consumers in a drastic way, changing media usage patterns and disturbing how information is sought, where consumers look for it, and how the decide to choose a brand. Nowadays, increase of popularity in multitasking has led customers to a continuous state of partial attention. Consumers have a different dynamic when taking a decision to purchase due to search engines, blogs, brand websites, etc. These new tools lead consumers to actively seek information rather than passively receive it from traditional media.

The current situation has lead word-of-mouth and brand advocacy to be vital to current communication strategies, however, this has reduced marketer’s control over the information that arrives to customers. Nevertheless, these new trends improve personalization, content, location and timing of the communications and opens new possibilities for accomplishing their objectives as marketers have a wider selection of communication possibilities.

Due to the numerous communication channels, marketers must think about the message as well as the context of their communication or “interactive effects”. It is mentioned that there is interaction between new and old media such as TV, social media, mobiles, off-line word-of-mouth, etc.

To adapt to the new situation, the author proposes two communication models:

  1. “Bottoms-up” communication matching model: identifies communication options with the best ability to satisfy a customer at different stages of the consumer decision journey.
  2. “Top-down” communication optimization model: evaluates the design of a marketing communication program with relevant criteria to how it is integrated to short-term sales goals and long-term brand equity.

As for integrating marketing communications, two types of approaches are discussed. First, the micro approaches using consumer psychology and information processing principles to explore the impact of multi-media campaigns in different communication goals. Then, a second approach using econometric techniques to assess the effect of multi-media campaigns at brand-level. Additionally, consistency, complementarity and cross-effect among media and communication options are mentioned as the three most important factor for a successful integrated marketing communications program.

A new consumer decision journey circle is mentioned. The new concept begins by the consideration of an initial set of brands which the potential user forms a first consideration, then selects a brand based on this knowledge to finally, use the product or service and create post-purchase experiences that will shape future interactions with the brand.

Later, an analysis of each media and its impact on the effectiveness of the communication is discussed:

  • Traditional media: It is still relevant even today. It is mentioned that the message communicates is more important than repetition. Nevertheless, advertising effects vary on the channel used.
  • Newer online media includes:
    • Search ads: users who search for specific and less popular keywords are said to be closer to a purchase decision. Allowing paid search ads to potentially increase click-through rate and conversion rates
    • Display ads: This type of advertisement can increase visitation to business-websites for most users in the purchase funnel. Nevertheless, this has considerable less impact on potential customers who already visited the website but failed to engage.
    • Websites: This channel can be more effective when it matches its potential customer’s intellectual style. Additionally, age, gender and geographical location segmentation can also affect success.
    • E-mail: Increases purchases three more times than social media and personalization of said emails is shown to improve its effectiveness.
    • o Social Media: Brand-generated content can positively affect valence, receptivity and customer susceptibility. Nevertheless, social media must not focus on a single platform as this can lead to misleading brand sentiments.
    • Mobile: Users in this media tend to go directly to a brand’s website or app. Users also make more purchases driven by impulse than product features. Additionally, coupons and ads have shown to be the most effective when personalized to the user’s taste, location and time of the day.


Aaker, Jennifer (1997), “Dimensions of Brand Personality,” Journal of Marketing Research, 34 (August), 347–357.

Abernathy, Avery M. (1992), “The Information Content of Newspaper Advertising,” Journal of Current Issues and Research in Advertising, (14, 2), 63-68.

Alba, Joseph W. and J. Wesley Hutchinson (1987), “Dimensions of Consumer Expertise,” Journal of Consumer Research, 13 (March), 411-454.

Allenby, Greg and Dominique Hanssens, “Advertising Response,” Marketing Science Institute, Special Report, No. 05-200, 2005.

Amaldoss, Wilfred and Chuan He (2010), “Product Variety, Informative Advertising, and Price Competition,” Journal of Marketing Research 47 (February), pp. 146–56.

Anderl, Eva, Ingo Becker, Florian Wangenheim, Jan Schumann (2014), “Mapping the Customer Journey: A Graph-Based Framework for Online Attribution Modeling,” DOI: 10.2139/ssrn.2343077

Andrews, Michelle, Xueming Luo, Zheng Fang, and Anindya Ghose (in press), “Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness” Marketing Science, forthcoming.

Assael, Henry (2011), “From Silos to Synergy: A Fifty-Year Review of Cross-Media Research Shows Synergy Has Yet to Achieve its Full Potential,” Journal of Advertising Research, 51 (1), pp. 42-48.

Assmus, Gert, John U. Farley, and Donald R. Lehmann (1984), “How Advertising Affects Sales: Meta-analysis of Econometric Results,” Journal of Marketing Research, 21 (February), pp. 65-74.

Ataman, M. Berk, Harald J. Van Heerde, Carl F. Mela (2010), “The Long-Term Effect of Marketing Strategy on Brand Sales,” Journal of Marketing Research, 47 (October), pp. 866- 882.

Aufreiter, Nora, Julien Boudet and Vivian Weng (2014), “Why Marketers Keep Sending You E- Mails,” McKinsey Quarterly, January.

Bagozzi, Richard P. and Utpal Dholakia (1999), “Goal Setting and Goal Striving in Consumer Behavior,” Journal of Marketing, 63 (Special Issue), pp. 19-32.

Barroso, Alicia and Gerard Llobet (2012), “Advertising and Consumer Awareness of New, Differentiated Products,” Journal of Marketing Research, 49 (December), pp. 773-792.

Batra, Rajeev, Aaron Ahuvia, and Richard P. Bagozzi (2012), “Brand Love,” Journal of Marketing, 76 (March), pp. 1-16.

Batra, Rajeev and Olli T. Ahtola (1990), “Measuring the Hedonic and Utilitarian Sources of Consumer Attitudes,” Marketing Letters, 2 (2), 159-170.

Batra, Rajeev and Pamela M. Homer (2004), “The Situational Impact of Brand Image Beliefs,” Journal of Consumer Psychology, 14 (3), pp. 318-330.


Batra, Rajeev and Michael L. Ray (1986), “Situational Effects of Advertising Repetition: The Moderating Influence of Motivation, Ability, and Opportunity to Respond,” Journal of Consumer Research, 12 (March), 432-445.

Belch, George E. and Michael A. Belch (2015), Advertising and Promotions: An Integrated Marketing Communications Perspective, 10th ed. (New York: McGraw-Hill).

Belk, Russell W. (1988), “Possessions and the Extended Self,” Journal of Consumer Research, 15 (September), pp. 139-168.

Bell, David (2014), Location Is (Still) Everything: The Surprising Influence of the Real World on How … World on How We Search, Shop, and Sell in the Virtual One, New Harvest, 2014.

Brakus, J. Joško, Bernd H. Schmitt, Lia Zarantonello (2009), “Brand Experience: What Is It? How Is It Measured? Does It Affect Loyalty?,” Journal of Marketing, 73 (May), pp. 52-68.

Bell, David (2014), Location Is (Still) Everything: The Surprising Influence of the Real World on How We Search, Shop, and Sell in the Virtual One, New Harvest.

Berger, Jonah (2014), “Word-of-Mouth and Interpersonal Communication: A Review and Directions for Future Research,” Journal of Consumer Psychology, 24 (4), pp. 586-607.

Berman, Ron and Zsolt Katona (2013), “The Role of Search Engine Optimization in Search Marketing,” Marketing Science, 32 (July-August), pp. 644-651.

Berry, Leonard L. (2000), “Cultivating Service Brand Equity,” Journal of the Academy of Marketing Science, 28 (1), pp. 128-137.

Bloemer, José M. M. and Hans D. P. Kasper (1995), “The Complex Relationship Between Consumer Satisfaction and Brand Loyalty,” Journal of Economic Psychology, 16 (July), pp. 311-329.

Bonfrer, André and Xavier Drèze (2009), “Real-Time Evaluation of Email Campaign Performance,” Marketing Science, 28 (2), 251-63.

Braun, Michael and Wendy Moe (2013), “Online Display Advertising: Modeling the Effects of Multiple Creatives and Individual Impression Histories,” Marketing Science, 32 (September/October), pp. 753-767.

Briggs, Rex, R. Krishnan and Norm Borin (2005), “Integrated Multichannel Communication Strategies: Evaluating the Return on Marketing Objectives—the Case of the 2004 Ford F-150 Launch,” Journal of Interactive Marketing, 19 (3), pp. 81-90.

Brown, Jacqueline Johnson, and Peter H. Reingen (1987), “Social Ties and Word-of-Mouth Referral Behavior,” Journal of Consumer Research, 14 (December), pp. 350-362.

Brown, Stephen, Robert V. Kozinets, and John F. Sherry Jr. (2003), “Teaching Old Brands New Tricks: Retro Branding and the Revival of Brand Meaning,” Journal of Marketing, 67 (3), pp. 19–33.

Bruce, Norris I., Natasha Zhang Foutz, and Ceren Kolsarici (2012), “Dynamic Effectiveness of Advertising and Word of Mouth in Sequential Distribution of New Products,” Journal of Marketing Research, 49 (August), pp. 469-486.

Campbell, Margaret C. and Amna Kirmani (2008), “I Know What You’re Doing and Why You’re Doing it: The Use of the Persuasion Knowledge Model in Consumer Research,” in


Curt Haugtvedt, Paul Herr, and Frank Kardes, eds., Handbook of Consumer Psychology, Psychology Press: New York, pp. 549-574.

Chang, Yuhmiin and Esther Thorson (2004), “Television and Web Advertising Synergies,” Journal of Advertising, 33 (2), 75-84.

Chaudhuri, Arjun, and Morris B. Holbrook (2001), “The Chain of Effects From Brand Trust and Brand Affect to Brand Performance: The Role of Brand Loyalty,” Journal of Marketing, 65, (April), pp. 81-93.

Chevalier, Judith A. and Dina Mayzlin (2006), “The Effect of Word of Mouth on Sales: Online Book Reviews,” Journal of Marketing Research, 43 (August), pp. 345-354.

Court, David, David Elzinga, Susan Mulder, and Ole Jorgen Vetvik (2009), “The Consumer Decision Journey,” McKinsey Quarterly, June.

Cox, Daniel F. (1967), Risk-taking and Information-Handling in Consumer Behavior (Boston: Harvard University Press).

Danaher, Peter J., Janghyuk Lee, and Laoucine Kerbache (2010), “Optimal Internet Media Selection,” Marketing Science 29 (March–April), pp. 336–47.

Danaher, Peter J., Guy W. Mullarkey, and Skander Essegaier (2006), “Factors Affecting Web Site Visit Duration: A Cross-Domain Analysis,” Journal of Marketing Research, 43 (May), pp. 182–94.

Danaher, Peter J., André Bonfrer, and Sanjay Dhar (2008), “The Effect of Competitive Advertising,” Journal of Marketing Research, 45 (April), pp. 211–25.

Danaher, Peter J. and Tracey S. Dagger (2013), “Comparing the Relative Effectiveness of Advertising Channels: A Case Study of a Multimedia Blitz Campaign,” Journal of Marketing Research, 50 (August), pp. 517-534.

de Vries, Lisette, Sonja Gensler, and Peter S. H. Leeflang (2012), “Popularity of Brand Posts on Brand Fan Pages: An Investigation of the Effects of Social Media Marketing,” Journal of Interactive Marketing, 26 (2), 83-91.

Dijkstra, Majorie, Heidi E. J. J. M. Buijtels and W. Fred van Raaij (2005), “Separate and Joint Effects of Medium Type on Consumer Responses: A Comparison of Television, Print, and the Internet,” Journal of Business Research, 58 (March), pp. 377-386.

Dinner, Isaac M., Harald J. Van Heerde, and Scott A. Neslin (2014), “Driving Online and Offline Sales: The Cross-Channel Effects of Traditional, Online Display, and Paid Search Advertising,” Journal of Marketing Research, 51 (October ), pp. 527-545.

Draganska, Michaela, Wesley R. Hartmann, and Gena Stanglein (2014), “Internet Versus Television Advertising: A Brand-Building Comparison,” Journal of Marketing Research, 51 (October), pp. 578-590.

Duncan, Tom and Frank Mulhern (2004) “A White Paper on the Status, Scope, and Future of IMC,” eds., March 2004, Daniels College of Business at the University of Denver.

Edell, Julie A., and Marian Chapman Burke (1987), “The Power of Feelings in Understanding Advertising Effects,” Journal of Consumer Research, 14 (December), pp. 421-433.


53 Edell, Julie A. and Kevin Lane Keller (1989), “The Information Processing of Coordinated

Media Campaigns,” Journal of Marketing Research, 26 (May), pp. 149–163.

Edell, Julie A. and Kevin Lane Keller (1999), “Analyzing Media Interactions: The Effects of Coordinated Print-TV Advertising Campaigns,” Marketing Science Institute Report No. 99– 120.

Ericson, Liz, Louise Herring, and Kelly Ungerman (2014), “Busting Mobile Shopping Myths,” McKinsey Quarterly, December.

Fang, Zheng, Xueming Luo and Megan E. Keith (2014), “How Effective is Location-Targeted Mobile Advertising,” MIT Sloan Management Review, October 2014, pp. 14-15.

Fournier, Susan (1997), “Consumers and Their Brands: Developing Relationship Theory in Consumer Research,” Journal of Consumer Research 24 (3), 343–373.

Freimer, Marshall and Dan Horsky (2012), “Periodic Advertising Pulsing in a Competitive Market,” Marketing Science, 31 (July-August), pp. 637-648

Friestad, Marian, and Peter Wright (1994), “The Persuasion Knowledge Model: How People Cope with Persuasion Attempts,” Journal of Consumer Research, 21 (June), pp. 1-31.

Gatignon, Hubert and Dominique M. Hanssens, “Modeling Marketing Interactions with Application to Sales Force Effectiveness,” Journal of Marketing Research, 24 (August), pp. 247-257.

Ghose, Anindya (2015), “Cynicism About Mobile Advertising is Greatly Misplaced,” The Conversation, August 19.

Godes, David, and Dina Mayzlin (2004), “Using Online Conversations to Study Word-of-Mouth Communication,” Marketing Science, 23 (November), pp. 545-560.

Goldenberg, Jacob, Gal Oestreicher-Singer, and Shachar Reichman, “The Quest for Content: How User-Generated Links Can Facilitate Online Exploration,” Journal of Marketing Research, 49 (August 2012), pp. 452-468.

Gopalakrishna, Srinath and Rubikar Chatterjee (1992), “A Communications Response Model for a Mature Industrial Product: Applications and Implications,” Journal of Marketing Research, 29 (May), pp. 189-200.

Gopinath, Shyam, Jacquelyn S. Thomas, and Lakshman Krishnamurthi (2014), “Investigating the Relationship Between the Content of Online Word of Mouth, Advertising, and Brand Performance,” Marketing Science, 33 (March-April), pp. 241-258.

Gupta, Sunil (2013), “For Mobile Devices, Think Apps, Not Ads,” Harvard Business Review, 91 (March), pp. 70-75.

Hanssens, Dominique M. (ed.) (2015), Empirical Generalizations About Marketing Impact. (Cambridge, MA: Marketing Science Institute).

Hauser, John R., Glen L. Urban, Guilherme Liberali, and Michael Braun (2009), “Website Morphing,” Marketing Science, 28 (March–April), pp. 202–23.

Havlena, William, Robert Cardarelli, and Michelle De Montigny (2007), “Quantifying the Isolated and Synergistic Effects of Exposure Frequency for TV, Print, and Internet Advertising,” Journal of Advertising Research, 47 (September), pp. 215-221.

Hoban, Paul R. and Randolph E. Bucklin (2015), “Effects of Internet Display Advertising in the Purchase Funnel: Model-Based Insights from a Randomized Field Experiment,” Journal of Marketing Research, 52 (June), pp. 375-393.

Hoch, Stephen J. and Young-Won Ha (1986), “Consumer Learning: Advertising and the Ambiguity of Product Experience,” Journal of Consumer Research, 13 (September), pp. 221- 33.

Holbrook, Morris B., and Rajeev Batra (1987), “Assessing the Role of Emotions as Mediators of Consumer Responses to Advertising,” Journal of Consumer Research, 14 (December), pp. 404-420.

Holbrook, Morris B. and Elizabeth C Hirschman (1982), “The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun,” Journal of Consumer Research, 9 (Sept), pp. 132-140.

Hu, Ye, Leonard M. Lodish, and Abba M. Krieger (2007) “An Analysis of Real World TV Advertising Tests: A 15 Year Update,” Journal of Advertising Research, 47 (September), pp. 341-353.

Hwang, Heeyoung, Paul McInerney, and Jun Shin (2105), “Learning from South Korea’s Mobile-Retailing Boom, McKinsey Quarterly, May.

Jagpal, Harsharanjeet S. (1981), “Measuring Joint Advertising Effects in Multiproduct Firms,” Journal of Advertising Research, 21 (February), pp. 65-69.

Janis, Irving L. and Carl I. Hovland (1959), “An Overview of Persuasibility Research,” in C. I. Hovland and I. L. Janis (Eds.), Personality and Persuasibility (New Haven. CT: Yale University Press), pp. 1-28.

Jedidi, Kamel, Carl F. Mela, and Sunil Gupta (1999), “Managing Advertising and Promotion for Long-Run Profitability,” Marketing Science, 18 (1), pp. 1-22.

Jerath, Kinshuk, Liye Ma, and Young-Hoon Park (2014), “Consumer Click Behavior at a Search Engine: The Role of Keyword Popularity,” Journal of Marketing Research, 51 (August), pp. 480-486.

Johnson, Russell E., Chu-Hsiang Chang, and Robert G. Lord (2006), “Moving From Cognition to Behavior: What the Research Says,” Psychological Bulletin, 132 (3), pp. 381–415.

Johnson, Michael D., Andreas Herrmann, and Frank Huber (2006), “The Evolution of Loyalty Intentions,” Journal of Marketing, 70 (April), pp. 122-132.

Joo, Mingyu, Kenneth C. Wilbur, Bo Cowgill, and Yi Zhu (2014), “Television Advertising and Online Search,” Management Science, 60 (1), pp. 56-73.

Katona, Zsolt (2014), “Competing for Influencers in a Social Network,” working paper, Haas School of Business, University of California at Berkeley.

Katona, Zsolt, Peter Pal Zubcsek, and Miklos Sarvary (2011), “Network Effects and Personal Influences: The Diffusion of an Online Social Network,” Journal of Marketing Research, 48 (June), pp. 425-443.

Keller, Kevin Lane (2001a), “Building Customer-Based Brand Equity: A Blueprint for Creating Strong Brands,” Marketing Management, July/August, 15-19.


Keller, Kevin Lane (2001b), “Mastering the Marketing Communications Mix: Micro and Macro Perspectives on Integrated Marketing Communication Programs,” Journal of Marketing Management, 17 (September), pp. 819-848.

Keller, Kevin Lane (2003), “Brand Synthesis: The Multi-Dimensionality of Brand Knowledge,” Journal of Consumer Research, 29 (4), pp. 595-600.

Keller, Kevin Lane (2013), Strategic Brand Management, 4th ed., Upper Saddle River, NJ: Pearson Prentice-Hall.

Kim, Jooyoung, Hye Jin Yoon and Sun Young Lee (2010), “Integrating Advertising and Publicity,” Journal of Advertising, 39 (1), pp. 97-114.

Koslow, Scott and Gerard J. Tellis (2011), “What Scanner Panel Data Tell Us About Advertising: A Detective Story with a Dark Twist,” Journal of Advertising Research, 51 (March), pp. 87-100.

Kotler, Philip, Neil Rackham, and Suj Krishnaswamy (2006), “Ending the War between Sales & Marketing,” Harvard Business Review, July–August , pp. 68–78.

Kuehn, Alfred (1962), “Consumer Brand Choice as a Learning Process,” Journal of Advertising Research, 2 (March-April), pp. 10–17.

Kumar, Ashish, Ram Bezawada, Rishika Rishika, Ramkumar Janakiraman, and P.K. Kannan (2016), “From Social to Sale: The Effects of Firm-Generated Content in Social Media on Customer Behavior,” Journal of Marketing, 80 (January), pp. 7-25.

Lamberton, Cait and Andrew T. Stephen (this issue), “Leveraging Digital/Social/Mobile Technology,” Journal of Marketing, forthcoming.

Lambrecht, Anja and Catherine Tucker (2013), “When Does Retargeting Work? Information Specificity in Online Advertising,” Journal of Marketing Research,” 50 (October), pp. 561- 576.

Lawrence, Benjamin, Susan Fournier, and Frederic Brunel (2013), “When Companies Don’t Make the Ad: A Multi-Method Inquiry into the Differential Effectiveness of Consumer- Generated Advertising,” Journal of Advertising, 42 (4), pp. 292-307.

Lee, Dokyun, Kartik Hosanagar, and Harikesh S. Nair (2015), “Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook,” working paper, Tepper School of Business, Carnegie-Mellon University.

Lee, Jae Young and David R. Bell (2013), “Neighborhood Social Capital and Social Learning for Experience Attributes of Products,” Marketing Science, 32 (November-December), pp. 960– 976.

Lemon, Katherine N. and Stephen M. Nowlis (2002), Developing Synergies Between Promotions and Brands in Different Price–Quality Tiers,” Journal of Marketing Research, 39 (May), pp. 171-185.

Levy, Sydney J. (1959), “Symbols for Sale” Harvard Business Review, 37 (July-August), pp. 117-124.


Li, Hongshuang (Alice) and P.K. Kannan (2014), “Attributing Conversions in a Multichannel Online Marketing Environment: An Empirical Model and a Field Experiment,” Journal of Marketing Research, 51 (February), pp. 40-56.

Lin, Chen, Sriram Venkataraman, and Sandy Jap (2013), “Media Multiplexing Behavior: Implications,” Marketing Science, 32 (March-April), pp. 310-324.

Lodish, Leonard M., Magid M. Abraham, Stuart Kalmenson, Jeanne Livelsberger, Beth Lubetkin, Bruce Richardson, and Mary Ellen Stevens (1995a), “How TV Advertising Works: A Meta-analysis of 389 Real World Split Cable TV Advertising Experiments,” Journal of Marketing Research, 32 (May), pp. 125-139.

Lodish, Leonard M., Magid M. Abraham, Jeanne Livelsberger, Beth Lubetkin, Bruce Richardson, and Mary Ellen Stevens (1995b), “A Summary of Fifty-Five In-Market Experimental Estimates of the Long-Term Effect of TV Advertising,” Marketing Science 14, (3, part 2 of 2), pp. G133-G140.

Loewenstein, George F., Elke U. Weber, Christopher K. Hsee, and Ned Welch (2001), “Risk as Feelings,” Psychological Bulletin, 127 (2), pp. 267-286.

Luo, Xueming and Naveen Donthu (2006), “Marketing’s Credibility: A Longitudinal Investigation of Marketing Communication Productivity and Shareholder Value,” Journal of Marketing 70 (October), pp. 70–91.

Lynch, John G. Jr., Howard Marmorstein and Michael F. Weigold (1988), “Choices from Sets Including Remembered Brands: Use of Recalled Attributes and Prior Overall Evaluations,” Journal of Consumer Research, 15 (September), pp. 169-184.

MacInnis, Deborah and Bernard J. Jaworski (1989), “Information Processing from Advertisements: Toward an Integrative Framework,” Journal of Marketing, 53 (October), pp. 1-23.

MacInnis, Deborah J., Christine Moorman, and Bernard J. Jaworski (1991). “Enhancing and Measuring Consumers’ Motivation, Opportunity, and Ability to Process Brand Information From Ads,” Journal of Marketing, 55 (October), pp. 32-53.

Madhavaram, Sreedhar, Vishag Badrinarayanan, and Robert E. McDonald (2005), “Integrated Marketing Communication (IMC) and Brand Identity as Critical Components of Brand Equity Strategy,” Journal of Advertising, 34 (Winter), pp. 69–80.

Malaviya, Prashant (2007), “The Moderating Influence of Advertising Context on Ad Repetition Effects: The Role of Amount and Type of Elaboration,” Journal of Consumer Research ,34 (June), pp. 32–40.

Manchanda, Puneet, Jean-Pierre Dubé, Khim Yong Goh, and Pradeep K. Chintagunta (2006), “The Effects of Banner Advertising on Internet Purchasing,” Journal of Marketing Research, 43 (February), pp. 98–108.

Mayzlin, Dina and Jiwoong Shin (2011), “Uninformative Advertising as an Invitation to Search,” Marketing Science, 30 (July-August), pp. 666-685.

McCracken, Grant (1989), “Who is the Celebrity Endorser? Cultural Foundations of the Endorsement Process,” Journal of Consumer Research, 16 (December), pp. 310-321


McGrath, John M. (2005), “A Pilot Study Testing Aspects of the Integrated Marketing Communications Concept,” Journal of Marketing Communications, 11 (3), pp.191-214.

McGuire, William J. (1978), “An Information Processing Model of Advertising Effectiveness,” in Harry L. Davis and Alvin J. Silk (Eds.), Behavioral and Management Science in Marketing, New York, NY: Ronald Press, pp. 156-180.

McLuhan, Marshall. (1964), “The Medium is the Message,” In Media and Cultural Studies: Keyworks. Meenakshi Gigi Durham and Douglas M. Kellner, eds. (2001). Malden, MA: Blackwell Publishers, Inc., pp. 129-138

Mantrala, Murali K. (2002), “Allocating Marketing Resources,” in Handbook of Marketing, B.A. Weitz and R. Wensley (editors), Sage Publications, Chapter 16.

Mela, Carl F., Sunil Gupta, and Donald R. Lehmann (1997), “The Long-Term Impact of Promotion and Advertising on Consumer Brand Choice,” Journal of Marketing Research, 34 (May), pp. 248-261.

Mitchell, Vincent-Wayne (1999) “Consumer Perceived Risk: Conceptualisations and Models,” European Journal of Marketing, 33 (1/2), pp. 163-195.

Naik, Prasad A. (2007), “Integrated Marketing Communications: Provenance, Practice and Principles,” in Handbook of Advertising, eds. Gerard J. Tellis and Tim Ambler, Sage Publications.

Naik, Prasad A. and Kay Peters (2009), “A Hierarchical Marketing Communications Model of Online and Offline Media Synergies,” Journal of Interactive Marketing, 23 (November), pp. 288-299.

Naik, Prasad A. and Kalyan Raman (2003), “Understanding the Impact of Synergy in Multimedia Communications,” Journal of Marketing Research, 40 (November), pp. 375–88.

Naik, Prasad A., Kalyan Raman, and Russ Winer (2005), “Planning Marketing-Mix Strategies in the Presence of Interactions,” Marketing Science, 24 (10), pp. 25–34.

Narayanan, Sridhar, Ramarao Desiraju and Pradeep K. Chintagunta (2004), “Return on Investment Implications for Pharmaceutical Promotional Expenditures: The Role of Marketing-Mix Interactions,” Journal of Marketing, 68 (October), pp. 90-105

Neslin, Scott (2002), Sales Promotion, MSI Relevant Knowledge Series (Cambridge, MA: Marketing Science Institute).

Nunes, Paul F. and Jeffrey Merrihue (2007), “The Continuing Power of Mass Advertising,” Sloan Management Review, Winter, pp. 63–69.

O’Guinn, Thomas, Chris Allen, Richard J. Seminik, and Angeline Close (2015), Advertising and Integrated Brand Promotion, 7th ed. (Stamford, CT: Cengage Learning).

Ohanian, Roobina (1990), “Construction and Validation of a Scale to Measure Celebrity Endorsers’ Perceived Expertise, Trustworthiness, and Attractiveness,” Journal of Advertising, 19 (3), pp. 39-52.

Oliver, Richard L. (2014), Satisfaction: A Behavioral Perspective on the Consumer. Routledge, 2014.


Olney, Thomas J., Morris B. Holbrook, and Rajeev Batra (1991), “Consumer Responses to Advertising: The Effects of Ad Content, Emotions, and Attitude toward the Ad on Viewing Time,” Journal of Consumer Research, 17 (March), pp. 440-453.

Osinga, Ernst C., Peter S.H. Leeflang, Shuba Srinivasan, and Jaap E. Wieringa (2011), “Why Do Firms Invest in Consumer Advertising with Limited Sales Response? A Shareholder Perspective,” Journal of Marketing, 75 (January), pp. 109-124.

Park, C. Whan, Deborah J. MacInnis, Joseph Priester, Andreas B. Eisingerich, and Dawn Iacobucci (2010), “Brand Attachment and Brand Attitude Strength: Conceptual and Empirical Differentiation of Two Critical Brand Equity Drivers,” Journal of Marketing, 74 (November), pp. 1-17.

Park, Ji Kyung and Deborah Roedder John (2010), “Got to Get You into My Life: Do Brand Personalities Rub Off on Consumers?,” Journal of Consumer Research 37 (December): 655– 669

Parsons, Leonard J. (1974), “An Econometric Analysis of Advertising, Retail Availability, and Sales of a New Brand,” Management Science, 20 (6), pp. 938-947.

Peterson, Robert A., & Merino, Maria C. (2003), Consumer Information Search Behavior and the Internet. Psychology & Marketing, 20(February), pp.99-121.

Petty, Richard E., John T. Cacioppo and David Schumann (1983), “Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement,” Journal of Consumer Research, 10 (September), pp. 135-146.

Pfeiffer, Markus and Markus Zinnbauer (2010), “Can Old Media Enhance New Media?,” Journal of Advertising Research, (March), pp. 42–49.

Pilotta, Joseph J., Donald E. Schultz, Gary Drenik, and Philip Rist (2004), “Simultaneous Media Usage: A Critical Consumer Orientation to Media Planning,” Journal of Consumer Behaviour, 3 (March), pp.285-292.

Punj, Girish N., and Richard Staelin (1983). “A Model of Consumer Information Search Behavior for New Automobiles.” Journal of Consumer Research, 9 (March), pp.366-380.

Raman, Kalyan and Prasaid A. Naik (2004), “Long-Term Profit Impact of Integrated Marketing Communications Program,” Review of Marketing Science, 2 (October).

Raman, Kalyan, Murali K. Mantrala, Shrihari Sridhar, and Yihui Elina Tang (2012), “Optimal Resource Allocation with Time-varying Marketing Effectiveness, Margins and Costs,” Journal of Interactive Marketing, 26 (10), pp. 43-52.

Reid, Mike, Sandra Luxton, and Felix Mavondo (2005), “The Relationship between Integrated Marketing Communication, Market Orientation, and Brand Orientation,” Journal of Advertising, 34 (Winter), pp. 11–23.

Reinartz, Werner and Peter Saffert (2013), “Creativity in Advertising: When It Works and When It Doesn’t,” Harvard Business Review, June, pp. 107-112.

Richins, Marsha L. (1997), “Measuring Emotions in the Consumption Experience,” Journal of Consumer Research, 24 (September), pp. 127-146.


Risselada, Hans and Peter C. Verhoef, and Tammo H.A. Bijmolt (2014), “Dynamic Effects of Social Influence and Direct Marketing on the Adoption of High-Technology Products,” Journal of Marketing, 78 (March), pp. 52-68.

Roberts, John (2004), The Modern Firm: Organizational Design for Performance and Growth, Clarendon Lectures in Management Studies, Oxford: Oxford University Press.

Rutz, Oliver J., Randolph E. Bucklin, and Garrett P. Sonnier (2012), “A Latent Instrumental Variables Approach to Modeling Keyword Conversion in Paid Search Advertising,” Journal of Marketing Research, 49 (June), pp. 306-319.

Rutz, Oliver J. and Randolph E. Bucklin (2011), “From Generic to Branded: A Model of Spillover in Paid Search Advertising,” Journal of Marketing Research, 48 (February), pp. 87- 102.

Schultz, Don E. and Philip J. Kitchen (1997), “Integrated Marketing Communications in U.S. Advertising Agencies: An Exploratory Study,” Journal of Advertising Research, 37 (September-October), pp. 7-18.

Schulze, Christian, Lisa Schöler, and Bernd Skiera (2014), “Not All Fun and Games: Viral Marketing for Utilitarian Products,” Journal of Marketing, 78 (January), pp. 1-19.

Schumann, Jan H., Florian von Wangenheim, and Nicole Groene (2014), “Targeted Online Advertising: Using Reciprocity Appeals to Increase Acceptance Among Users of Free Web Services,” Journal of Marketing, 78 (January), pp. 59-75.

Schweidel, David A. and Wendy W. Moe (2014), “Listening In on Social Media: A Joint Model of Sentiment and Venue Format Choice,” Journal of Marketing Research, 51 (August), pp. 387-402.

Sethuraman, Raj, Gerard J. Tellis, and Richard A. Briesch (2011), “How Well Does Advertising Work? Generalizations from Meta-Analysis of Brand Advertising Elasticities,” Journal of Marketing Research, 48 (June), pp. 457-471.

Shavitt, Sharon, Carlos J. Torelli, and Jimmy Wong (2009), “Identity-based Motivation: Constraints and Opportunities in Consumer Research,” Journal of Consumer Psychology, 19 (July), pp. 261-266.

Smith, Robert E. and William R. Swinyard (1983), “Attitude-Behavior Consistency: The Impact of Product Trial versus Advertising,” Journal of Marketing Research, 20 (Aug.), 257-67.

Smith, Timothy M., Srinath Gopalakrishna, and Paul M. Smith (2004), “The Complementary Effect of Trade Shows on Personal Selling,” International Journal of Research in Marketing 21 (1), pp. 61–76.

Smith, Timothy M., Srinath Gopalakrishna, and Rubikar Chatterjee (2006), “A Three-Stage Model of Integrated Marketing Communications at the Marketing-Sales Interface,” Journal of Marketing Research, 43 (November), pp. 546–79.

Special Issue on the Emergence and Impact of User-Generated Content (2012), Marketing Science, 31 (May-June).


Stammerjohan, Claire, Charles M. Wood, Yuhmiin Chang, and Esther Thorson (2005), “An Empirical Investigation of the Interaction Between Publicity, Advertising, and Previous Brand Attitudes and Knowledge,” Journal of Advertising, 34 (Winter), pp. 55-67.

Steenkamp, Jan-Benedict E. M. and Inge Geyskens (2006), “How Country Characteristics Affect the Perceived Value of Web Sites,” Journal of Marketing 70 (July), pp. 136–50.

Stephen, Andrew T. and Jeff Galak (2012), “The Effects of Traditional and Social Earned Media on Sales: A Study of a Microlending Marketplace,” Journal of Marketing Research, 49 (October), pp. 624-639.

Stephen, Andrew T., Michael R. Sciandra, and J. Jeffrey Inman (2105), “Is It What You Say or How You Say It That Matters? The Effects of Branded Content on Consumer Engagement with Brands on Facebook,” working paper, Saïd Business School, University of Oxford.

Stern, Bruce L. and Alan J. Resnick (1991), “Information Content in Television Advertising: A Replication and Extension,” Journal of Advertising Research, June/July, 36-48.

Stewart, David A. and David H. Furse (1986), Effective Television Advertising: A Study of 1000 Commercials. Lexington, MA: Lexington Books.

Swaminathan, Vanitha, Karen Stilley, and Rohini Ahluwalia (2009), “When Brand Personality Matters: The Moderating Role of Attachment Styles,” Journal of Consumer Research, 35 (April): 985–1002.

Swinyard, William R. and Michael R. Ray (1977), “Advertising-Selling Interactions: An Attribution Theory Experiment,” Journal of Marketing Research, 14 (November), pp. 509- 516

Tellis, Rajesh K. Chandy, and Pattana Thaivanich (2000), “Which Ad Works, When, Where, and How Often? Modeling the Effects of Direct Television Advertising,” Journal of Marketing Research, 37 (February), pp. 32–46.

Thompson, Debora V. and Rebecca W. Hamilton (2006), “The Effects of Information Processing Mode on Consumers’ Responses to Comparative Advertising,” Journal of Consumer Research, 32 (March), pp. 530–40.

Thompson, Debora V. and Prashant Malaviya (2013), “Consumer-Generated Ads: Does Awareness of Advertising Co-Creation Help or Hurt Persuasion?,” Journal of Marketing,77 (May), pp. 33-47.

Torelli, Carlos J., Aysegül Özsomer, Sergio W. Carvalho, Hean Tat Keh, and Natalia Maehle (2012), “Brand Concepts as Representations of Human Values: Do Cultural Congruity and Compatibility Between Values Matter?,” Journal of Marketing, 76 (July), pp. 92-108.

Trusov, Michael, Anand V. Bodapati, and Randolph E. Bucklin (2010), “Determining Influential Users in Internet Social Networks,” Journal of Marketing Research, 47 (August), pp. 643- 658.

Trusov, Michael, Randolph E. Bucklin and Koen Pauwels (2009), “Effects of Word-of-Mouth Versus Traditional Marketing: Findings from an Internet Social Networking Site,” Journal of Marketing, 73 (September), pp. 90-102.


61 Unnava, H. Rao and Robert E. Burnkrant (1991), “Effects of Repeating Varied Ad Executions on

Brand Name Memory,” Journal of Marketing Research, 28 (November), pp. 406-16.

Urban, Glen, Guilherme (Gui) Liberali, Erin Macdonald, Robert Bordley, and John Hauser (2014), “Morphing Banner Advertising,” Marketing Science, 33 (January-February), pp. 27- 46.

Vakratsas, Demetrios and Tim Ambler (1999), “How Advertising Works: What Do We Really Know?,” Journal of Marketing 63, (January), pp. 26-43.

Vakratsas, Demetrios, Fred M. Feinberg, Frank M. Bass, and Gurumurthy Kalyanaram (2004), “The Shape of Advertising Response Functions Revisited: A Model of Dynamic Probabilistic Thresholds,” Marketing Science, 23 (Winter), pp. 109–19.

Van Den Bulte, Christophe and Stefan Wuyts (2007), Social Networks and Marketing (Marketing Science Institute Relevant Knowledge Series, Cambridge, MA).

Van Heerde, Harald J., Maarten J. Gijsenberg, Marnik G. Dekimpe, and Jan-Benedict E.M. Steenkamp (2013), “Price and Advertising Effectiveness over the Business Cycle,” Journal of Marketing Research, 50 (April), pp. 177-193.

Voorveld, Hilde A. M., Peter C. Neijens, and Edith G. Smit (2011), “Opening the Black Box: Understanding Cross-Media Effects,” Journal of Marketing Communications, 17 (April): 69- 85.

Voorveld, Hilde A. M., Peter C. Neijens, and Edith G. Smit (2012), “The Interacting Role of Media Sequence and Product Involvement in Cross-Media Campaigns,” Journal of Marketing Communications, 18 (July), pp. 203-216.

Walker Naylor, Rebecca, Cait Poynor Lamberton, and Patricia M. West (2012), “Beyond the “Like” Button: The Impact of Mere Virtual Presence on Brand Evaluations and Purchase Intentions in Social Media Settings,” Journal of Marketing, 76 (November), pp. 105-120.

Wiesel, Thorsten, Koen Pauwels, and Joep Arts (2011), “Marketing’s Profit Impact: Quantifying Online and Off-line Funnel Progression,” Marketing Science, 30 (July-August), pp. 604-611.

Wijaya, Bambang Sukma (2012), “The Development of Hierarchy of Effects Model in Advertising,” International Research Journal of Business Studies, 5 (April–July), pp. 73-85.

Wind, Yoram and Byron Sharp (2009), “Advertising Empirical Generalizations: Implications for Research and Action,” Journal of Advertising Research, 49 (June), pp. 246-252.

Young, Antony (2010), Brand Media Strategy: Integrated Communications Planning in the Digital Era. New York: Palgrave MacMillan.

Young, Daniel R. and Francis S. Bellezza (1982), “Encoding Variability, Memory Organization and the Repetition Effect,” Journal of Experimental Psychology: Learning, Memory and Cognition, 8 (6), pp. 545-59.

Susan Rose, Neil Hair and Moira Clark (2011) Online Customer Experience: A Review of the Business-to-Consumer Online Purchase Context International Journal of Management Reviews, Vol. 13, 24–39 (2011)

Les interactions entre le site internet d’une marque et ses clients sont aujourd’hui des moyens de rendre l’expérience utilisateur positive, et de fait, de construire une relation à long terme entre les deux parties. Facilité la recherche d’informations, l’acte d’achat ou l’utilisation d’un service sont autant d’enjeux digitaux pour une entreprise. L’objectif de cet article est donc de comprendre les tenants et les aboutissants de l’expérience client en ligne dans un contexte d’achat.

Nous verrons donc dans ce résumé 3 points importants :

  1. La compréhension de l’expérience client en ligne en situation d’achat
  2. Le cadre conceptuel de l’expérience client en ligne
  3. Les antécédents de l’expérience client en ligne

L’émergence d’internet en tant que canal de distribution et de communication a permis aux entreprises d’augmenter les interactions possibles avec les clients. Qu’il s’agisse de recherche d’informations sur l’entreprise et ses produits, l’utilisation de services en ligne, l’achat en ligne ou les réseaux sociaux, tous permettent aux entreprises de créer une véritable communauté.

L’acte d’achat en ligne en est donc renforcé et s’explique par trois phénomènes principaux :

  • L’augmentation constante du taux d’adoption et de pénétration d’internet
  • L’augmentation des sites proposant l’achat en ligne
  • Le développement des technologies facilitant l’achat en ligne (M-commerce, retargeting…)

Ainsi les progrès technologiques dans les appareils mobiles ont permis au client un accès plus direct et instantané à l’information, la communication, et l’achat en ligne. Un certain nombre d’études ont exploré les impact sociaux et comportementaux de cette technologie mobile (Matsuda 2006; Palen et al., 2001), tandis que d’autres ont examiné les facteurs qui influent sur l’adoption de ces nouvelles interfaces client (Lee and Benbasat 2003; Sarker and Wells 2003; Varshney et Vetter 2002). Le travail de Lee et Benbasat (2003) est utile ici, car il suggère des façons dont les consommateurs peuvent enrichir leur expérience d’achat en profitant de l’accès instantané à Internet créé par cette technologie. Ils proposent sept éléments clés qui améliorent l’expérience des consommateurs en matière de M-commerce. Il s’agit notamment du degré de personnalisation, de communication, de connectivité et de contenu.

Il existe un nombre significatif d’études en ligne qui peuvent aider à identifier les conducteurs probables de l’expérience client en ligne (OCE). Ceux-ci se concentrent principalement sur 3 aspects :

  • La performance et l’efficacité du site web.
  • Le comportement, la recherche et l’achat en ligne des consommateurs.
  • L’expérience du service en ligne.

Ces trois domaines de la littérature démontrent que les consommateurs interagissent avec Internet dans une large gamme d’activités, ce qui entraîne un certain nombre d’expériences différentes et, en fin de compte, des expériences. Il a été suggéré que les avantages offerts au client en ligne modifient l’équilibre des compétences dans la relation organisation-client, créant un client plus puissant et proactif. Le but de cet article est donc de fournir un examen complet et une critique d’une gamme variée de littérature contemporaine qui informe notre compréhension des antécédents et des conséquences d’une OCE efficace dans un contexte d’achat.


  1. Le concept d’OCE

Comme expliqué précédemment les clients ont aujourd’hui une large gamme de possibilités dans leurs activités en ligne. L’expérience en ligne devient donc un concept important pour les responsables marketing de l’environnement B2C en ligne.

La section suivante viendra comparer l’expérience client à l’expérience client en ligne(OCE) et posera le cadre conceptuel de l’OCE.

La première différence clé entre les deux contexte est le degré de contact personnel. L’interaction personnelle fournit une source de contact très riche à partir de laquelle des réponses subjectivent résulteront

Deuxièmement, des différences existent par rapport à la manière dont les informations sont fournies.
Le contexte en ligne permet une information très riche, alors qu’en face à face, il est possible que ce soit plus limité.

La troisième distinction est la période. Les clients peuvent acheter en ligne n’importe quand, n’importe où et dans un cadre qui s’adapte à eux. Dans le contexte de face-à-face, les interactions avec les clients sont définies par les heures d’ouverture du lieu de vente.

Enfin, des différences peuvent exister en termes de présentation de la marque. En ligne, la marque est présentée de manière principalement audiovisuelle, alors que hors ligne, les entreprises disposent de tout une gamme de possibilités qui lui permette d’être identifiable.

  1. Un cadre conceptuel de l’OCE

L’importance de l’expérience utilisateur est motivée par le besoin de l’organisation d’augmenter les offres de produits et / ou services de base

Afin de se différentier, particulièrement sur des marchés concurrentiels et saturés, la distinction entre l’offre de produit tangibles et la valeur d’une expérience distincte est donc primordiale.
Meyer et Schwager définissent l’expérience client comme « La réponse interne et subjective des clients à un contact direct ou indirect avec une entreprise. »

Carbone et Haeckel (1994) suggèrent également qu’une expérience client se déroule chaque fois qu’un client interagit avec une organisation et ses activités. Ils définissent CE comme « l’impression à emporter formée par la rencontre des gens avec les produits, les services et les entreprises »

Ainsi le lien entre la satisfaction client et l’expérience client bien réel et a donné naissance au concept de satisfaction du client électronique qui est distinct de l’expérience et défini comme : « L’évaluation psychologique du client et de l’expérience accumulée du processus d’achat et de l’utilisation du produit expérience. » Cette définition met en exergue le caractère psychologique de l’expérience utilisateur, par conséquent l’expérience peut être supposée multidimensionnelle et individuelle pour chaque client.

Des auteurs tels que Frow et Payne (2007) on identifiés trois états qui constituent une expérience :

  • Le rationnel
  • Le cognitif
  • L’émotif


En termes d’élément cognitif, Frow et Payne (2007) identifient le rôle du traitement interne de la stimulation entrante à l’individu. Ils proposent que le client participe à l’examen de l’information reçue par rapport aux expériences passées, présentes et potentiellement futures. Cette approche est Compatible avec le modèle de traitement de l’information cognitive (IP), qui est bien développé comme une approche de l’explication du comportement d’achat du consommateur

(Bettman et al., 1998). Cela suggère qu’une partie de l’évaluation de la rencontre du client sera relativement dirigée et impliquera un traitement rationnel de l’information concernant la rencontre qui est finalement stockée dans la mémoire.

Cependant, l’idée du client comme un être rationnel et cognitif peut être considérée comme incomplète (Shiv et Fedorikhin 1999). Hansen (2005) suggère que la reconnaissance à la fois cognitive et émotionnelle, et l’interaction entre les deux, est une approche plus appropriée. Le rôle des réponses affectives dans le comportement des consommateurs est maintenant bien établi (Bagozzi et al., 1999, Holbrook et Hirschman, 1982). Hansen (2005) définit l’émotion comme une réponse à un stimulus et, dans le contexte en ligne, le stimulus serait les composants du site Web auquel le client est exposé.

En termes CE, il a été suggéré que le traitement affectif et émotionnel mène à des associations à plus long terme dans la mémoire (Edvardsson 2005). L’accent mis sur la composante émotionnelle de la CE est très évident dans les discussions académiques et praticiennes sur le sujet de CE (Holbrook et Hirschman, 1982; Gentile et al., 2007; Pine et Gilmore 1999; Schmitt 2003; Shaw, 2002). La littérature OCE est limitée à l’heure actuelle et est incompatible en termes de définitions et d’explications du concept. En développant le concept d’OCE, nous supposons également qu’il est constitué d’états cognitifs et affectifs. La raison en est que les facteurs cognitifs et affectifs ont également été identifiés comme des états internes dans les modèles de comportement d’achat en ligne (Eroglu et al., 2001).

  1. Les antécédents de l’expérience utilisateur en ligne

De nombreuses revues de littératures se sont intéressées aux concepts qui influencent l’expérience client en ligne.

Tout d’abord, le rôle de la propriété intellectuelle, utilisée dans les étapes cruciales de la recherche et l’évaluation au cours des décisions d’achat des clients. Le traitement de l’information concerne la façon dont les individus utilisent leurs sens internes et leurs processus mentaux pour donner du sens à leur action.
Il y a également les concepts de connaissances antérieures et d’expériences antérieures. On parle ici de la connaissance préalable d’un produit ou service, qui est un facteur clé dans l’efficacité d’une recherche, et fournit la base de l’évaluation de nouvelles informations entrantes.

La littérature fournit des explications utiles sur le lien entre les connaissances antérieures et l’expérience antérieure qui fonctionnent pendant la recherche et la navigation de l’information et la façon dont elles affectent les intentions futures en matière d’activité en ligne.

Chih-Chung et Chang (2005) proposent qu’une boucle de rétroaction circulaire ait lieu pendant la navigation en ligne. Les client évaluent en permanence leur expérience en ligne en utilisant les différentes fonctionnalités du site Web, notamment les informations sur les produits, les modalités de paiement, les délais de livraison, les services fournis, la navigation et la confidentialité des données.
Les expériences passées affectent les sentiments de risque et la probabilité de continuer à utiliser un site de vente en ligne.

Ainsi, les expériences passées fournissent au client une référence à partir de laquelle les attentes sont définies et des évaluations sont réalisées. C’est la raison pour laquelle la propriété intellectuelle est inclue dans le cadre de l’OCE.

Deux autres facteurs apparaissent régulièrement dans la littérature de la consommation en ligne. Il s’agit de facilité d’utilisation perçue (PEOU) et de l’utilité perçue (PU). Ces deux concepts sont identifiés dans les modèles d’adoption de la technologie et également été trouvés pour influencer l’adoption des achat en ligne. La perception de la facilité d’utilisation d’un site est fortement liée à une expérience en ligne positive. Ces concepts permettent ainsi de faire ressortir des caractéristiques d’un site facile d’utilisation :


  • Des écrans épurés
  • Organisation claire
  • Flux logique
  • Navigation facile

En 2005 Cao et Al. développent un cadre pour évaluer la qualité d’un site et les déterminants perçus dans la facilité d’utilisation. Les fonctionnalités les plus importantes, qui améliorent l’expérience et conduisent le client à un état émotionnel positif sont :

  • L’installation de recherche
  • La réactivité du site
  • La capacité multimédia
  • La précision et la pertinence de l’information.

Le troisième ensemble d’antécédents proposés d’OCE concerne les compétences (SK) et le contrôle perçu (PC). L’acquisition de compétences est la capacité du client à utiliser Internet avec compétence (Klein et Ford 2002). Cela a été spécifiquement identifié comme la capacité de naviguer et d’interagir avec un site Web et relie fortement l’état cognitif du client. En supposant que l’apprentissage par la réalisation est pertinent pour le développement des compétences sur Internet, il est proposé que la capacité s’amplifie avec l’expérience au fil du temps (Lehto et al., 2006). Les niveaux élevés d’utilisation et donc l’expérience conduiront à des niveaux plus élevés de capacité et créeront des connaissances et une expérience antérieures.

D’autres recherches plus récentes de la littérature se rapportent aux avantages perçus par le client de l’utilisation d’un site web en termes de bénéfices perçus et de plaisir.
L’expérience de vente en ligne est étroitement associée aux attitudes envers Internet en tant que moyen de vente et ses avantages reconnus. Les preuves suggèrent qu’une OCE positive résulte de la création d’une expérience à la fois amusante et agréable, ainsi que de générer des sentiments de contrôle, et donc de la liberté, pour le client (Wolfinbarger et Gilly 2001). Ce domaine de la littérature n’est pas tellement développé, et il existe des possibilités d’explorer plus complètement la relation entre les états hédoniques et enrichissants de l’OCE avec le besoin de sentiments de contrôle.


Enfin le dernier domaine identifié dans la littérature et permettant de comprendre l’expérience utilisateur en ligne concerne les concepts jumeaux de risque et de confiance. Ces deux concepts sont étroitement liés et nécessites d’être étudiés conjointement.
Le concept de confiance a été largement reconnu dans les modèles qui recherchent à expliquer les attitudes, comportements et les intentions des consommateurs en ligne.
Jin et Park (2006) proposent que la confiance soit le résultat d’un certain nombre d’attributs de l’environnement d’achat. Ce modèle affirme donc que la confiance et la satisfaction sont des variables de résultats qui, indépendamment et ensemble, ont une influence directe sur la fidélisation de la clientèle.
Une approche alternative considère la confiance comme un facteur contributif.



Tan et Setherland (2004) considèrent la confiance comme un concept multidisciplinaire. C’est une approche psychologique de la confiance, ou cette dernière est considérée comme un « sentiment ou une croyance profondément arrachée ». Ainsi, dans cette perspective, on peut supposer que la confiance est un antécédent de l’expérience utilisateur en ligne, en proposant qu’elle influence l’état émotionnel résultant de l’expérience en ligne.

La vulnérabilité et la peur de l’inconnu sont souvent citées comme une composante contextuelle de la confiance et dans le contexte de l’expérience en ligne, qui peut être très faible sur le contexte personnel, cela s’accentue et conduit à un plus grand besoin de confiance.

Van der Heijden et al. (2003) suggèrent que les sentiments de confiance élevés réduisent les inquiétudes concernant des facteurs inconnus tels que la performance du produit ou la politique organisationnelle. En parallèle, McKnight et Chervany (2001), dans la modélisation d’une typologie de la confiance, identifient différents niveaux de confiance au sein du client en ligne. Il s’agit notamment de la confiance dans le «vendeur électronique» (interpersonnel), de la confiance dans le Web lui-même (institutionnel) et de la confiance en général dans d’autres (disposition).


Une gamme de facteurs de risque sont identifiés dans la littérature, les principaux étant le risque économique / financier, le risque de performance, le risque personnel / psychologique, le risque social, le risque physique et le risque de perte de temps (Bart et al. 2005; Cas 2002; Chen et Dubinsky 2003; Ha 2004; Huang et al., 2004). Chen et Dubinsky (2003) suggèrent que la compréhension du risque est important pour les spécialistes du marketing en ligne en raison de son lien avec la valeur du client.  Conclusion : Ce document traite des définition et le compréhension actuelle et de la notion d’expérience client et explore le concept nouvellement étendu d’OCE. Cette revue de littérature permet ainsi de développer un cadre conceptuel pour les tests futurs.
Ainsi un certain nombre de conclusion peuvent être dessinées :Tout d’abord il est important de retenir qu’il existe un lien étroit entre une expérience utilisateur en ligne positive et la satisfaction client. Les éléments liés à la satisfaction client sont nombreux.
Ensuite, un certain nombre de facteurs antécédents sont identifiés dans la littérature qui semblent avoir un effet direct et interactif sur l’expérience utilisateur en ligne. Il existe des preuves suggérant que des effets interactifs existent entre les antécédents individuels et leurs effets sur les résultats, le risque, les avantages et la valeur du client. Enfin, alors que la littérature fournit une base théorique solide pour comprendre les concepts clés qui sous-tendent les réponses de l’utilisateur en ligne, la prochaine étape du développement de la littérature devra progresser vers un niveau plus approfondi de la compréhension des états constitutifs de l’expérience utilisateur en ligne à savoir les états affectifs et cognitifs.

Références :

Alba, J.W. and Hutchinson, J.W. (1987). Dimensions of consumer

expertise. Journal of Consumer Research, 13, pp.


Algesheimer, R. and Dholakia, P.M. (2006). Do customer communities pay off? Harvard Business Review, 84, pp.


Arnold, M.J., Reynolds, K.E., Ponder, N. and Lueg, J.E. (2005). Customer delight in a retail context: investigating delightful and terrible shopping experiences. Journal of Business Research, 58, pp. 1132–1145.

Bagozzi, R.P., Gopinath, M. and Prashanth, U.N. (1999). The role of emotions in marketing. Journal of the Academy of Marketing Science, 27, pp. 184–206.

Balasubramanian, S., Peterson, R.A. and Jarvenpaa, S.L. (2002). Exploring the implications of M-commerce for markets and marketing. Journal of the Academy of Marketing Science, 30, 348–361.

Barnes, S.J. and Vidgen, R.T. (2006). Data triangulation and web quality metrics: a case study in e-government. Information and Management, 43, pp. 767–777.

Bart, Y., Shankar, V., Sultan, F. and Urban, G.L. (2005). Are the drivers and role of online trust the same for all web sites and consumers? A large-scale exploratory empirical study. Journal of Marketing, 69, pp. 133–152.

Bauer, H.H., Hammerschmidt, M. and Falk, T. (2005). Measuring the quality of e-banking portals. International Journal of Bank Marketing, 23, pp. 153–175.

Bellman, S., Lohse, G.L. and Johnson, E.J. (1999). Predictors of online buying behavior. Communication of the ACM, 42, pp. 32–38.

Bettman, J.R. (1979). An Information Processing Theory of Consumer Choice. Reading, MA: Addison-Wesley.

Bettman, J.R., Luce, M.F. and Payne, J.W. (1998). Constructive consumer choice processes. Journal of Consumer Research, 25, pp. 187–217.

Bhatnagar, A., Misra, S. and Rao, H.R. (2000). On risk, convenience and Internet shopping behaviour. Communications of the ACM, 43, pp. 98–105.

Bonnin, G. (2006). Physical environment and service experience: an appropriation-based model. Journal of Services Research, 6, pp. 45–65.

Brown, J.R. and Dant, R.P. (2008). On what makes a significant contribution to the retailing literature. Journal of Retailing, 84, pp. 131–135.

Brown,M., Pope, N. and Voges, N. (2003). Buying or browsing? An exploration of shopping orientations and online purchase intention. European Journal of Marketing, 37, pp. 1666–1684.

Brucks, M. (1985). The effects of product class knowledge on information search behaviour. Journal of Consumer Research, 12, pp. 1–16.

Cai, S. and Jun, M. (2003). Internet users’ perceptions of online service quality: a comparison of online buyers and information searchers. Managing Service Quality, 13, pp.504–519.

Cao, M., Zhang, Q. and Seydel, J. (2005). B2C e-commerce web site quality: an empirical examination. Industrial Management & Data Systems, 105, pp. 645–661.

Carbone, L. and Haeckel, S. (1994). Engineering customer experiences. Marketing Management, 3, pp. 9–11. Cases, A.-S. (2002). Perceived risk and risk-reduction strategies in Internet shopping. International Review of Retail, Distribution and Consumer Research, 12, pp. 375–394.

Chen, S.-J. and Chang, T.-Z. (2003). A descriptive model of online shopping process: some empirical results. International Journal of Service Industry Management, 14, pp. 556–569.

Chen, Z. and Dubinsky, A.J. (2003). A conceptual model of perceived customer value in e-commerce: a preliminary investigation. Psychology and Marketing, 20, pp. 323–347.

Cheung, C. and Lee, M.K.O. (2000). Trust in Internet shopping: a proposed model and measurement instrument.

Paper presented at the 6th Americas Conference on Information Systems, Long Beach, USA.

Cheung, C.M.K., Chan, G.W.W. and Limayem,M. (2005). A critical review of online consumer behaviour: empirical research. Journal of Electronic Commerce in Organizations, 3, pp. 1–19.

Chih-Chung, C. and Chang, S.-C. (2005). Discussion on the behavior intention model of consumer online shopping. Journal of Business and Management, 11, pp. 41–57.

Childers, T.L., Carr, C.L., Peck, J. and Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behaviour. Journal of Retailing, 77, pp. 511–535.

Cho, N. and Park, S. (2001). Development of electronic commerce user–consumer satisfaction index (ECUSI) for

Internet shopping. Industrial Management & Data Systems, 101, pp. 400–405.

Christodoulides, G., de Chernatony, L., Furrer, O., Shiu, E. and Abimbola, E. (2006). Conceptualising and measuring the equity of online brands. Journal of Marketing Management, 22, pp. 799–825.

Corbitt, B.J., Thanasankit, T. and Yi, H. (2003). Trust and e-commerce: a study of consumer perceptions. Electronic Commerce Research and Applications, 2, pp. 203–215.

Corner, J.L., Thompson, F., Dillon, S. and Doolin, B. (2005). Perceived risk, the Internet shopping experience and online purchasing behaviour: aNewZealand perspective. Journal of Global Information Management, 13, pp. 66–88.

Coursaris, C. and Hassanein, K. (2001). Understanding M-commerce: a consumer centric model. Quarterly Journal of Electronic Commerce, 3, pp. 247–271.

Cox, D.F. (1967a). Risk handling in consumer behaviour – an intensive study of two cases. In Cox, D.F. (ed.), Risk Taking and Information Handling in Consumer Behaviour. Boston, MA: Graduate School of Business Administration, Harvard University, pp. 34–81.

Cox, D.F. (1967b). The sorting rule model of consumer product evaluation process. In Cox, D.F. (ed.), Risk Taking

and Information Handling in Consumer Behaviour. Boston, MA: Graduate School of Business Administration, Harvard University, pp. 317–323.

Davis, F.D. (1989). Perceived usefulness, perceived ease-ofuse and user acceptance of information technology. MIS Quarterly, 13, pp. 319–340.

Davis, F.D., Bagozzi, R.P. andWarshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology., 22, pp. 1109–1130.

Dholakia, R.R. and Uusitalo, O. (2002). Switching to electronic stores: consumer characteristics and the perception of shopping benefits. International Journal of Retail & Distribution Management, 30, pp. 459–469.

Dholakia, U.M., Bagozzi, R.P. and Pearo, L.K. (2004). A social influence model of consumer participation in network and small group-based virtual communities. International Journal of Research in Marketing, 21, pp. 241–263.

Dillon, T.W. and Reif, H.L. (2004). Factors influencing consumers’ e-commerce commodity purchases. Information Technology, Learning and Performance Journal, 22, pp. 1–12.

Dowling, G.R. and Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of Consumer Research, 21, pp. 119–134.

Edvardsson, B. (2005). Service quality: beyond cognitive assessment. Managing Service Quality, 15, pp. 127–131.

Elliott, M.T. and Speck, P.S. (2005). Factors that affect attitude toward a retail web site. Journal of Marketing Theory and Practice, 13, pp. 40–50.

Eroglu, S.A., Machleit, K.A. and Davis, L.M. (2001). Atmospheric qualities of online retailing. A conceptual model and implications. Journal of Business Research, 54, pp. 177–184.

Eysenck, M.W. (1993). Principles of Cognitive Psychology. Hove: Lawrence Erlbaum Associates Ltd. Flavián, C. and Guinalíu, M. (2005). The influence of virtual communities on distribution strategies in the internet. International Journal of Retail & Distribution Management, 33, pp. 405–425.

Frow, P. and Payne, A. (2007). Towards the ‘perfect’ customer experience. Journal of Brand Management, 15, pp. 89–101.

Geffen, D. (2003). TAM or just plain habit: a look at experienced online shoppers. Journal of End User Computing, 15, pp. 1–13.

Geffen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27, pp. 51–90.

Gentile, C., Spiller, N. and Noci, G. (2007). How to sustain the customer experience: an overview of experience components that co-create value with the customer. European Management Journal, 25, pp. 395–410.

George, J.F. (2002). Influences on the intent to make Internet purchases. Internet Research, 12, pp. 165–180.

Grant, R., Clarke, R.J. and Kyriazis, E. (2007). A review of factors affecting online consumer search behaviour from an information value perspective. Journal of Marketing Management, 23, pp. 519–533.

Grewal, D., Levy, M. and Kumar, V. (2009). Customer experience management in retailing: an organizing framework.

Journal of Retailing, 85, pp. 1–14.

Ha, H.-Y. (2004). Factors affecting online relationships and impacts. Marketing Review, 4, pp. 189–209.

Ha, H.-Y. and Perks, H. (2005). Effects of consumer perceptions of brand experience on the web: brand familiarity, satisfaction and brand trust. Journal of Consumer Behaviour, 4, pp. 438–452.

Hair, N., Rose, S. and Clark, M. (2009). Using qualitative repertory grid techniques to explore perceptions of business-to-business online customer experience. Journal of Customer Behaviour, 8, pp. 51–65.

Hansen, T. (2005). Perspectives on consumer decisionmaking: an integrated approach. Journal of Consumer Behaviour, 4, pp. 420–437.

Hennig-Thurau, T., Gwinner, K.P., Walsh, G. and Gremler, D.D. (2004). Electronic word-of-mouth via consumeropinion platforms: what motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18, p. 38.

Hodkinson, C. and Kiel, G. (2003). Understanding web information search behaviour: an exploratory model. Journal of End User Computing, 15, pp. 27–48.

Holbrook, M.B. and Hirschman, E.C. (1982). The experiential aspects of consumption: consumer fantasies, feelings and fun. Journal of Consumer Research, 9, pp. 132–140.

Holloway, B.B.,Wang, S. and Parish, J.T. (2005). The role of cumulative online purchasing experience in service recovery management. Journal of Interactive Marketing, 19, pp. 54–66.

Huang,W.-Y., Schrank, H. and Dubinsky, A.J. (2004). Effect of brand name on consumers’ risk perceptions of online shopping. Journal of Consumer Behaviour, 4, pp. 40–50.

Internet World Stats (2007). Retrieved from http:// (accessed 14 March 2008).

Jaillet, H.F. (2002). Web metrics: measuring patterns in online shopping. Journal of Consumer Behaviour, 2, pp. 369–381.

Janda, S. and Ybarra, A. (2005). Do product and consumer characteristics affect the relationship between online experience and customer satisfaction? Journal of Internet Commerce, 4, pp. 133–151.

Jarvenpaa, S.L., Tractinsky, N. and Vitale, M. (2000). Consumer trust in an Internet store. Information Technology and Management, 1, pp. 45–71.

Jayawardhena, C. (2004). Personal values’ influence on e-shopping attitude and behaviour. Internet Research, 14, pp. 127–138.

Jin, B. and Park, J.Y. (2006). The moderating effect of online purchase experience on the evaluation of online storeattributes and the subsequent impact on market response outcomes. Advances in Consumer Research, 33, pp. 203– 211.

Johnson, E.J., Moe, W.M., Fader, P.S., Bellman, S. and Lohse, G.L. (2004). On the depth and dynamics of online search behaviour. Management Science, 50, pp. 299–308.

Jones, M.A. (1999). Entertaining shopping experiences: an exploratory investigation. Journal of Retailing and Consumer Services, 6, pp. 129–139.

Kaynama, S.A. and Black, C.I. (2000). A proposal to assess the service quality of online travel agencies: an exploratory

study. Journal of Professional Services Marketing, 21, pp. 63–88.

Khalifa, M. and Liu, V. (2003). Satisfaction with Internetbased services: the role of expectations and desires. International Journal of Electronic Commerce, 7, pp. 31–49.

Khalifa, M. and Liu, V. (2007). Online consumer retention: contingent effects of online shopping habit and online shopping experience. European Journal of Information Systems, 16, 780–792.

Kim, Y. (2002). Consumer value: an application to mall and Internet shopping. International Journal of Retail & Distribution Management, 30, pp. 595–602.

Kim, H.-R. (2004). Developing an index of online customer satisfaction. Journal of Financial Services Marketing, 10,

  1. 49–64.

Kim, S. and Stoel, L. (2004). Apparel retailers: website quality, dimensions and satisfaction. Journal of Retailing

and Consumer Services, 11, pp. 109–117.

Klein, L.R. and Ford, G.T. (2002). Consumer search for information in the digital age: an empirical study of prepurchase

search for automobiles. Advances in Consumer Research, 29, pp. 100–101.

Koufaris, M., Kambil, A. and LaBarbera, P.A. (2002). Consumer behaviour in web-based commerce: an empirical study. International Journal of Electronic Commerce, 6, pp. 115–138.

Kumar, N., Lang, K.R. and Peng, Q. (2005). Consumer search behaviour in online shopping environments. E-Service Journal, pp. 87–102.

Lee, G.-G. and Lin, H.-F. (2005). Customer perceptions of e-service quality in online shopping. International Journal of Retail & Distribution Management, 33, pp. 161–176.

Lee, H., Herr, P.M., Kardes, F.R. and Kim, C. (1999). Motivated search: effects of choice accountability, issue involvement and prior knowledge on information acquisition and use. Journal of Business Research, 45, pp. 75–88.

Lee, M.K.O. and Turban, E. (2001). A trust model for consumer Internet shopping. International Journal of Electronic Commerce, 6, pp. 75–91.

Lee, Y.E. and Benbasat, I. (2003). Interface design for mobile commerce. Communications of the ACM, 46, pp.


Lehto, X.Y., Kim, D.-Y. and Morrison, A.M. (2006). The effect of prior destination experience on online information

search behaviour. Tourism and Hospitality Research, 6, pp. 160–178.

Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Applications,

2, pp. 216–228.

Loiacono, E.T., Watson, R.T. and Goodhue, D.L. (2002). WEBQUAL: a measure of website quality. American Marketing Association. Conference Proceedings, 13, pp. 432–438.

Mathwick, C., Malhotra, N.K. and Rigdon, E. (2001). Experiential value: conceptualization, measurement and application in the catalog and Internet shopping environment. Journal of Retailing, 77, pp. 39–56.

Matsuda, M. (2006). Mobile communication and selective sociality. In Ito, M., Okabe, D. and Matsuda, M. (eds),

Personal, Portable, Pedestrian: Mobile Phones in Japanese Life. Cambridge, MA: MIT Press, pp. 123–142.

McKnight, D.H. and Chervany, N.L. (2001). What trust means in e-commerce customer relationships: an interdisciplinary

conceptual typology. International Journal of Electronic Commerce, 6, pp. 35–59.

Meyer, C. and Schwager, A. (2007). Understanding customer experience. Harvard Business Review, 85, pp. 116–


Mitchell, V. (1999). Consumer perceived risk: conceptualizations and models. European Journal of Marketing, 33,

  1. 163–195.

Moorman, C., Zaltman, G. and Deshpandé, R. (1992). Relationships between providers and users of market research: the dynamics of trust within and between organisations. Journal of Marketing Research, 29, pp. 314–329.

Morgan, R.M. and Hunt, S.D. (1994). The commitment– trust theory of relationship marketing. Journal of Marketing, 58, pp. 20–38.

Moynagh, M. and Worsley, R. (2002). Tomorrow’s consumer – the shifting balance of power. Journal of Consumer Behaviour, 1, pp. 293–301.

Murray, K.B. and Haubl, G. (2002). The fiction of no friction: a user skills approach to cognitive lock-in. Advances in Consumer Research, 29, pp. 11–18.

Novak, T.P., Hoffman, D.L. and Yung, Y.-F. (2000). Measuring the customer experience in online environments: a structural modelling approach. Marketing Science, 19, pp. 22–42.

Nysveen, H. and Pedersen, P.E. (2004). An exploratory study of customers’ perception of company websites offering various interactive applications: moderating effects of customers’ Internet experience. Decision Support Systems, 37, pp. 137–150.

Palen, L., Salzman, M. and Youngs, E. (2001). Discovery and integration of mobile communications in everyday life. Pesonal and Ubiquitous Computing, 5, pp. 109–122.

Parasuraman, A. and Zinkhan, G.M. (2002). Marketing to and serving customers through the Internet: an overview

and research agenda. Journal of the Academy of Marketing

Science, 30, pp. 286–295.

Perea y Monsuwé, T., Dellaert, B.G.C. and de Ruyter, K.(2004). What drives consumers to shop online? A literature review. International Journal of Service Industry Management, 15, pp. 102–121.

Pine, II, B.J. and Gilmore, J.H. (1999). The Experience Economy: Work Is Theatre and Every Business A Stage. Boston, MA: Harvard Business School Press.

Poynter, R. (2008). Facebook: the future of networking with customers. International Journal of Market Research, 50, pp. 11–12.

Punj, G.N. and Staelin, R. (1983). A model of consumer information search behavior for new automobiles. Journal of Consumer Research, 9, pp. 366–380.

Quan, S. and Wang, N. (2004). Towards a structural model of the tourist experience: an illustration from food experiences in tourism. Tourism Management, 25, pp. 297– 305.

Rodgers,W., Negash, S. and Suk, K. (2005). The moderating effect of online experience on the antecedents and consequences

of online satisfaction. Psychology and Marketing, 22, pp. 313–331.

Rosa, J.A. and Malter, A.J. (2003). E-(embodied) knowledge and E-commerce: How physiological factors affect online sales of experiential products. Journal of Consumer Psychology, 13, pp. 63–73.

Rousseau, D.M., Bitkin, S.B., Burt, R.S. and Camerer, C. (1998). Not so different after all: a cross discipline view of trust. Academy of Management Review, 23, pp. 393– 404.

Sarker, S. and Wells, J.D. (2003). Understanding mobile handheld device use and adoption. Communications of the ACM, 46, pp. 35–40.

Schmitt, B.H. (2003). Customer Experience Management: A Revolutionary Approach to Connecting with Your Customer. Hoboken NJ: John Wiley.

Shaw, C. (2002). The DNA of Customer Experience – How Emotions Drive Value. New York: Palgrave.

Shchiglik, C. and Barnes, S.J. (2004). Evaluating website quality in the airline industry. Journal of Computer Information Systems, 44, pp. 17–25.

Shim, S., Eastlick, M.A., Lotz, S.L. and Warrington, P. (2001). An online pre-purchase intentions model: the role of intention to search. Journal of Retailing, 77, pp. 397– 416.

Shiv, B. and Fedorikhin, A. (1999). Heart and mind in conflict. The interplay of affect and cognition in consumer decision-making. Journal of Consumer Research, 26, pp. 278–292.

So, W.C.M., Wong, T.N.D. and Sculli, D. (2005). Factors affecting intentions to purchase via the Internet. Industrial

Management & Data Systems, 105, pp. 1225–1244.

Stewart, K.J. (1999). Transference as a means of building trust in world wide web sites. Proceedings of the 20th International Conference on Information Systems, 1999 pp. 459–464.

Suh, B. and Han, I. (2003). The impact of customer trust and perception of security control on the acceptance of electronic commerce. International Journal of Electronic Commerce, 7, pp. 135–161.

Summers, J.O. (2001). Guidelines for conducting research and publishing in Marketing: from conceptualization through the review process. Journal of the Academy of Marketing Science, 29, pp. 405–401.

Tan, F.B. and Sutherland, P. (2004). Online consumer trust: a multi-dimensional model. Journal of Electronic Commerce in Organizations, 2, pp. 41–59.

Teo, T.S.H. (2002). Attitudes toward online shopping and the Internet. Behaviour & Information Technology, 21, pp.


Trabold, L.M., Heim, G.R. and Field, J.M. (2006). Comparing e-service performance across industry sectors. International Journal of Retail & Distribution Management, 34, pp. 240–257.

Tranfield, D., Denyer, D. and Smart, P. (2003). Towards a methodology for developing evidence-informed management

knowledge by means of systematic review. British Journal of Management, 14, pp. 207–222.

Trevino, L.K. and Webster, J. (1992). Flow in computermediated computer communication: electronic mail and voice mail evaluation and impacts. Communication Research, 19, pp. 539–573.

Tsai, S.-P. (2005). Integrated marketing as management of holistic consumer experience. Business Horizons, 8, pp.

431–441. US Census Bureau (2009). Wholesale and retail trading: online retail sales. Available at


(accessed 13 November 2009).

van der Heijden, H., Verhagen, T. and Creemers, M. (2003). Understanding online purchase intentions: contributions

from technology and trust perspectives. European Journal of Information Systems, 12, pp. 41–48.

Varshney, U. and Vetter, R. (2002). Mobile commerce: framework, applications and networking support. Mobile Networks and Applications, 7, pp. 185–198.

Vijayasarathy, L.R. and Jones, J.M. (2000). Print and Internet

catalog shopping: assessing attitudes and intentions. Internet Research, 10, pp. 191–200.

Watson, R.T., Akselsen, S. and Pitt, L.F. (1998). Attractors: building mountains in the flat landscape of the world wide web. California Management Review, 40, pp. 36–56.

Wolfinbarger, M. and Gilly, M.C. (2001). Shopping online for freedom, control and fun. California Management

Review, 43, pp. 34–55.

Wood, C.M. and Scheer, L.K. (1996). Incorporating perceived risk into models of consumer deal assessment and

purchased intention. Advances in Consumer Research, 23, pp. 399–404.

Zeng, M. and Reinartz,W. (2003). Beyond online search: the road to profitability. California Management Review, 45,

  1. 107–130.

Social media: The new hybrid element of thepromotion mix, Business Horizons

Mangold, G., Faulds, D. Social media: The new hybrid element of thepromotion mix, Business Horizons (2009) 52, 357-365

Mots clés Integrated marketing communications, Social media, Consumer-generated media, Promotion mix

Dans cet article, l’auteur développe l’argument qu’il faut utiliser les réseaux sociaux comme nouveau levier du Promotion Mix

Développement :

L’émergence des réseaux sociaux a permis a ce qu’une personne puisse communiquer à des milliers d’autres sur des produits et des entreprises.

L’impact des relations entre consommateurs a été donc grandement augmentée. Cet article argumente que les réseaux sociaux sont un élément hybride du promotion mix pare qu’il permet aux entreprises de communiquer avec leurs cconsommateurs et aux consommateurs dintéragir entre eux.

Les relations entre les consommateurs sur les réseaux peuvent être difficilement controlées et surveillées. Ce qui va a l’encontre des traditionelles méthodes de marketing ou une grande place est accordée au contrôle et à la certitude.

Conclusion :

Il faut donc apprendre à modeler les discussions des consommateurs de tels sorte à ce qu’il soit consistent et parle d’une même voix avec la mission de l’entreprise ainsi que ses valeurs.

Les méthodes qui peuvent être utilisées dans ce sens sont d’offrir aux consommateurs des plateformes sociales, et d’utiliser des blogs, des outils des réseaux sociaux et des outils promotionnels pour engager les consommateurs

Bibliographie :

ARGN. (2006).ARGNet. Retrieved July 7, 2008, from
Blackshaw, P., & Nazzaro, M. (2004).Consumer-Generated
Media (CGM) 101: Word-of-mouth in the age of the Web-fortified consume.Retrieved July 25, 2008, from
Boone, L. E., & Kurtz, D. L. (2007).Contemporary marketing(13thed.). Mason, OH: Thomson/South-Western.
Coca Cola. (2008).My Coke rewards. Retrieved July 7, 2008,
Dobele, A., Lindgreen, A., Beverland, M., Vanhamme, J.,& van Wijk, R. (2007).Why pass on viral messages? Becausethey connect emotionally.
Business Horizons, 50(4), 291—304.
Dobele, A., Toleman, D., & Beverland, M. (2005). Controlled infection! Spreading the brand message through viral market-ing Business Horizons, 48(2), 143—149.
Dove. (2007).Campaign for real beauty. Retrieved July 7, 2008,from
DuPont. (2008).DuPoTMStormRooTMwith KEVLAR1: Product information Retrieved July 7, 2008, from
FLW Outdoors. (2008).Homepage. Retrieved July 7, 2008, from
Foux, G. (2006, May 8). Consumer-generated media: Get your customers involved. Brand Strategy, 38—39.
General Electric. (2008).Imagination at work: Our culture Retrieved August 25, 2008, from
Gillin, P. (2007). The new influencers: A marketer’s guide to the
new social media. Sanger, CA: Quill Driver Books.
Greenberg, K. (2007, December 17).Unilever to unveil Dove ad winner during Oscars. Retrieved July 7, 2008, from
Lempert, P. (2006). Caught in the Web. Progressive Grocer,
85 (12), 18.
Li, C., & Bernoff, J. (2008).Groundswell: Winning in a world transformed by social technologies. Boston: Harvard Business Press.
Mangold, W. G., Miller, F., & Brockway, G. R. (1999). Word-of-mouth communication in the service marketplace.Journal of Services Marketing, 13 (1), 73—89.
Mattel. (2008).Homepage Retrieved July 7, 2008, from
Mayzlin, D. (2006). Promotional chat on the Internet.MarketingScience, 25 (2), 155—163.
Muniz, A. M., & Schau, H. J. (2007). Vigilante marketing andconsumer-created communications.Journal of Advertising,36 (3), 35—50.

“Cashless” transactions: perceptions of money in mobile payments

Khan and Craig M (2009) “Cashless” transactions: perceptions of money in Mobile Payment. International Business and Economics review;1 (1) 23-32.

Keywords : Mobile payments, cashless transactions, money, debit cards, credit cards

Cet article démontre que de nombreuses études basés sur le “cashless transaction” c’est à dire le fait de payer par transaction électronique ou bien par un échange électronique affectent la perception de l’argent ainsi que le comportement d’achat. Il est ainsi démontré que lorsqu’un individu procède à un paiement par carte bancaire le volume et la valeur de ces achats sont augmentés.

Cet article démontre la notion de tangibilité du cash qui influence la perception de l’argent. Ainsi, Khan et Craig Lees expliquent en quoi sous les conditions du cash, il existe une conscience (le conscient et l’inconscient ) cette dernière a une possession de valeur transférée. Cette perception peut avoir un impact direct sur la perception de l’argent des gens et sur leur comportement d’achat.

Au Y. and Kauffman R., 2008. The economics of mobile payments: understanding
stakeholder issues for an emerging financial technology application, Electron
Commerce Research and Applications, 7(2), pp.141–164.
Bohannan, P., 1955. Some principles of exchange and investment among the Tiv,
American Anthropologist, 57, pp. 60-70.
Bruner, J. and Goodman, C., 1947. Value and need as organizing factors in perception,
Journal of Abnormal and Social Psychology, 42(1), pp. 33-44.
Brysbaert, M. and d’Ydewalle, G., 1989. Why Belgian coins grow smaller. Psylogica
Belgica, 29, pp. 109-118.
Burgoyne, C.; Routh, D. and Ellis, A., 1999. The transition to the Euro: some
perspectives from economic psychology, Journal of Consumer Policy, 22, pp.91-
Dahlberg, T.; Mallat, N.; Ondrus J. and Zmijewska, A., 2006. M-payment market and
research-past, present and future, Helsinki Mobility Roundtable, Helsinki, Finland.
Demosthenous, C.; Robertson, B.; Cabraal, A. and Singh, S., 2006. Cultural identity
and financial literacy: Australian aboriginal’s experiences of money and money
management. Paper presented at the Financial Literacy Banking and Identity
Conference, RMIT University, Melbourne, Australia.
Feinberg, R. A., 1986. Credit cards as spending facilitating stimuli: a conditioning
interpretation. Journal of Consumer Research, 12, pp. 384-356.
Fisher, I., 1928. The money illusion. New York: Adelphi.
Flatraaker, D., 2008. Mobile, Internet and electronic payments: the key to unlocking the
full potential of the internal payments market, Journal of Payments Strategy &
Systems, 3(1), pp. 60-70.
Fleming, R.; Taiapa, J.; Pasikale, A. and Easting, S., 1997. The Common Purse,
Auckland University Press, New Zealand.
Furnham, A., 1983. Inflation and the estimated size of notes, Journal of Economic
Psychology, 4, pp. 349-352.
International Business & Economics Review, vol.1, n.1
ISSN 1647-1989
Garcia-Swartz, D.; Hahn, W. and Layne-Farrar, A., 2007. Further thoughts on the
cashless society: A reply to Dr. Shampine, Review of Network Economics, 6(4),
pp. 509-524.
Gourville, J. T., 1998. Pennies-a-day: the effect of temporal reframing on transaction
evaluation, Journal of Consumer Research, 24, pp. 395-408.
Grierson, P., 1977. The Origins of Money. London: University of London: The Athlone
Herzberg A., 2003. Payments and banking with mobile personal devices,
Communications of the ACM, 46(5), pp. 53–58
Hirschman, E. C., 1979. Differences in consumer purchase behaviors by credit card
payment system, Journal of Consumer Research, 6, pp. 58-66.
Hicks, J., 1989. A Market Theory of Money. Oxford: Clarendon press.
Hoover, K., 1996. Some suggestions for complicating the theory of money. In S.
Pressman (Ed.), Interactions in Political Economy. London: Routledge.
Humphrey, D. and Berger, A., 1990. Market failure and resource under economic
incentives to use different payment instruments. In: D.Humphrey (Eds.), The U.S.
payment system: Efficiency, risk and the role of the Federal Reserve Bank.
Academic Publisher, Boston.
Humphrey, D., Lawrence, B. and Vessala, J. M., 1996. Cash, electronic payments: a
cross-country analysis, Journal of Money, 28, pp. 914-939.
Ingham, I., 2004. The nature of money, Polity Press, Cambridge.
Klee, E., 2004. Paper or Plastic: The Effect of Time on Check and Debit Card Use at
Grocery Stores. URL: (Acessed 10th April 2009).
Keynes, J. M., 1930. A Treatise on Money. London: Macmillan.
Lea, S., 1981. Inflation, decimalisation and the estimated size of coins, Journal of
Economic Psychology, 1, pp. 79-81.
Libow, V., 1955. Sustainable consumption, The Journal of Retailing, 7, pp. 29-31.
Leiser, D. and Izak, G., 1987. The money size illusion as a barometer of confidence:
the case of high inflation in Israel, Journal of Economic Psychology, 8, pp. 347-
Loewenstein, G. and Prelec, D. (1992). Anomalies in intemporal choice: evidence and
an interpretation, Quarterly Journal of Economics, May, pp. 573-597.
McDonald, S.; Oates, C.; Young, W. and Hwang, K., 2006. Toward sustainable
consumption: researching voluntary simplifiers. Psychology and Marketing, 23(6),
pp. 515 – 534.
Mishra, H.; Mishra, A. and Nayakankuppam, D., 2006. Money: a bias for the whole.
Journal of Consumer Research, 32(4), pp. 541-549.
Nocera, J., 1994. A piece of the action: How the middle class joined the money class,
Simon & Schuster, New York.
Olney, M., 1999. Avoiding default: The role of credit in consumption: The collapse of
1930. Quarterly Journal of Economics, 114, pp. 319-335.
Pahl, J., 1999. Invisible Money: Family Finances in the Electronic Economy, Policy
Press, Bristol.
Prelec, D. and Simester, D., 2001. Always leave home without it: a further investigation
of the credit-card effect on willingness to pay, Marketing Letters, 12(2), pp. 5-12.
Prelec, D. and Loewenstein, G., 1998. The red and the black: mental accounting of
savings and debt, Marketing Science, 17, pp. 4-28.
Pousttchi, K., 2008. A modelling approach and reference models for the analysis of
mobile payment use cases, Electronic Commerce Research and Application,
7(2), pp.182–201.
Pousttchi, K.; Schiessler, M. and Wiedemann, D., 2009. Proposing a comprehensive
framework for analysis and engineering of mobile payment business models,
Information Systems and E-Business Management, 7, pp. 363-393.
Raghubir, P. and Srivastava, J., 2002. Effect of face value on product valuation in
foreign currencies, Journal of Consumer Research, 29, pp. 335-347.
International Business & Economics Review, vol.1, n.1
ISSN 1647-1989
Soman, D., 2001. Effects of payment mechanism on spending behavior: The role of
rehearsal immediacy of payments, Journal of Consumer Research, 27, pp. 460-
Saugstad, P. and Schioldborg, P., 1966. Value and size perception, Scandinavian
Journal of Psychology, 7, pp. 102-114.
Shafir, E.; Diamond, P. and Tversky, A., 1997. Money illusion, Quarterly Journal of
Economics, 112, pp. 341-374.
Shefrin, H. and Thaler, R., 1988. The behavioural life-cycle hypothesis, Economic
Inquiry, 26, pp. 609-643.
Singh, S., 2000. Electronic commerce and the sociology of money, Sociological
Research Online, 4(4), 1-12 from
(Accessed 14th March 2009)

Singh, S. and Ryan, A., 1999. Gender, Design and Electronic Commerce, Research
Report No. 25. CIRCIT at RMIT, Melbourne, Australia.
Snelders, H.; Lea, S.; Webley, P. and Hussein, G., 1992. The polymorphous concept of
money, Journal of Economic Psychology, 13, pp. 71-92.
Tajfel, H., 1959. Quantitative Judgement in Social Perception, British Journal of
Psychology, 50, pp. 16-29.
Taylor, B. and Tilford, D., 2000. Why consumption matters. In: Juliet B.. Schor and
Douglas, B. Holt, (Eds.), The consumer society reader, pp. 484.
Tyszka, T. and Przybyszewski, K., 2006. Cognitive and emotional factors affecting
currency perception, Journal of Economic Psychology, 27(4), pp. 518-530.
Weber, M., 1947. The Theory of Social and Economic Organization, Translation by A.
M. Henderson and T. Parsons, (Eds.), The Free Press, New York.
Weber, M., 1978. Economy and Society, vols. 1 and 2, G. Roth & C. Wittich (Eds.),
University of California Press, Berkeley.
Yoon, S., 2001. Tangled Octopus, Far Eastern Economic Review, 164(July 5), pp. 40.
Zavestoski, S., 2002. The social-psychological bases of anticonsumption attitudes,
Psychology & Marketing, 19, pp. 149-165.
Zellermayer, O., 1996. The Pain of Paying. Unpublished Ph.D. Dissertation. Carnegie
Mellon University.
Zelizer, V., 1994. The Social Meaning of Money, Basic Books, New York.

Maximizing the Spread of Influence through a Social Network

Fiche de lecture  :

Kempe, D., Kleinberg, J., Tardos, E. (2013), Maximizing the Spread of Influence through a Social Network

Mots clés : approximation algorithms, social networks, viral marketing, diffusion of innovations

Les auteurs ont mis en place des processus et algorithmes pour déterminer l’étendu de l’influence sur les réseaux sociaux. Ils tentent de déterminer quels algorithmes peuvent analyser comment l’influence se diffuse sur les réseaux sociaux et comment cibler des individus

Développement :

Les réseaux sociaux jouent un rôle clé dans la diffusion de l’information, des idées et de l’influence parmis les utilisateurs.

N’importe quelle idée peut apparaître sur les réseaux sociaux et elle peut soit disparaitre très vite ou se propager et marquer l’esprit collectif de la population.

Avec le Big Data collecté sur les réseaux sociauux, ont peut estimer avec quelle force des individus s’influencent et marketer un produit afin qu’il soit adopter par une grande partie d’un dit network. Les premisces du marketing Viral et de l’Influence marketing sont que en targettant quelques personnes influentes avec un contrat ou des produits gratuits on peut déclencher une cascade d’influence ou les influenceurs vont influencé leurs followers qui vont faire de même avec leurs followers et leurs amis, ainsi de suite, créant ainsi une vague d’influence qui se propage.

Conclusion : Afin que ce phénomène se produit, il faut réussir à cibler une poignée d’influenceur qui sont en adéquation parfaite avec les thèmes de la campagne, le produit et la marque.

Il faut que les followers voient dans ce relaie du produit par l’influenceur, un acte tout à fait naturel de part l’univers de celui-ci. La correspondace doit être parfaite notamment entre la base de followers de la marque et celle de l’influenceur


Références bibliographiques

  • 1. R. Albert, H. Jeong, A. Barabasi. Error and attack tolerance of complex networks. Nature 406(2000), 378-382.
  • [2] C. Asavathiratham, S. Roy, B. Lesieutre, G. Verghese. The Influence Model. IEEE Control Systems, Dec. 2001.
  • [3] C. Asavathiratham. The Influence Model: A Tractable Representation for the Dynamics of Networked Markov Chains. Ph.D. Thesis, MIT 2000.
  • [4] F. Bass. A new product growth model for consumer durables. Management Science 15(1969), 215-227.
  • [5] E. Berger. Dynamic Monopolies of Constant Size. Journal of Combinatorial Theory Series B 83(2001), 191-200.
  • [6] L. Blume. The Statistical Mechanics of Strategic Interaction. Games and Economic Behavior 5(1993), 387-424.
  • [7] J. Brown, P. Reinegen. Social ties and word-of-mouth referral behavior. Journal of Consumer Research 14:3(1987), 350-362.
  • [8] J. Coleman, H. Menzel, E. Katz. Medical Innovations: A Diffusion Study Bobbs Merrill, 1966.
  • [9] G. Cornuejols, M. Fisher, G. Nemhauser. Location of Bank Accounts to Optimize Float. Management Science, 23(1977).
  • [10] P. Domingos, M. Richardson. Mining the Network Value of Customers. Seventh International Conference on Knowledge Discovery and Data Mining, 2001.
  • [11] R. Durrett. Lecture Notes on Particle Systems and Percolation. Wadsworth Publishing, 1988.
  • [12] G. Ellison. Learning, Local Interaction, and Coordination. Econometrica 61:5(1993), 1047-1071.
  • [13] J. Goldenberg, B. Libai, E. Muller. Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth. Marketing Letters 12:3(2001), 211-223.
  • [14] J. Goldenberg, B. Libai, E. Muller. Using Complex Systems Analysis to Advance Marketing Theory Development. Academy of Marketing Science Review 2001.
  • [15] M. Granovetter. Threshold models of collective behavior. American Journal of Sociology 83(6):1420-1443, 1978.
  • [16] V. Harinarayan, A. Rajaraman, J. Ullman. Implementing Data Cubes Efficiently. Proc. ACM SIGMOD 1996.
  • [17] T.M. Liggett. Interacting Particle Systems. Springer, 1985.
  • [18] M. Macy. Chains of Cooperation: Threshold Effects in Collective Action. American Sociological Review 56(1991).
  • [19] M. Macy, R. Willer. From Factors to Actors: Computational Sociology and Agent-Based Modeling. Ann. Rev. Soc. 2002.
  • [20] V. Mahajan, E. Muller, F. Bass. New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of Marketing 54:1(1990) pp. 1-26.
  • [21] S. Morris. Contagion. Review of Economic Studies 67(2000).
  • [22] G. Nemhauser, L. Wolsey. Integer and Combinatorial Optimization. John Wiley, 1988. .
  • [23] G. Nemhauser, L. Wolsey, M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14(1978), 265–294.
  • [24] M. Newman. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2001).
  • [25] D. Peleg. Local Majority Voting, Small Coalitions, and Controlling Monopolies in Graphs: A Review. 3rd Colloq. on Structural Information and Communication, 1996.
  • [26] M. Richardson, P. Domingos. Mining Knowledge-Sharing Sites for Viral Marketing. Eighth Intl. Conf. on Knowledge Discovery and Data Mining, 2002.
  • [27] E. Rogers. Diffusion of innovations Free Press, 1995.
  • [28] T. Schelling. Micromotives and Macrobehavior. Norton, 1978.
  • [29] T. Valente. Network Models of the Diffusion of Innovations. Hampton Press, 1995.
  • [30] S. Wasserman, K. Faust. Social Network Analysis. Cambridge University Press, 1994.
  • [31] D. Watts. A Simple Model of Global Cascades in Random Networks. Proc. Natl. Acad. Sci. 99(2002), 5766-71.
  • [32] H. Peyton Young. The Diffusion of Innovations in Social Networks. Santa Fe Institute Working Paper 02-04-018(2002).
  • [33] H. Peyton Young. Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton, 1998

Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids

Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids

Gerald Haübl • Valerie Trifts

Marketing Science 19, 1, 415-178


Mots clés : Consumer decision, Online shopping, Interactive decision aids,

Les possibilités offertes par internet ne sont aujourd’hui plus à démontrées et deux facteurx principaux en sont la cause :

L’augmentation drastique du nombre d’entreprises qui ont fait d’internet un superbe moyen de communiquer avec leurs clients potentiels d’une part, et l’adoption rapide par les clients d’internet en tant qu’outil d’achat ou de source d’information.

Cet article traitera particulièrement de l’achat en ligne et de l’interactivité qui découle de cet environnement.

Une des caractéristiques de l’environnement d’achat en ligne est qu’il offre au client beaucoup d’interactivité. Pour définir l’interactivité il est important de rappeler qu’elle se base sur la réciprocité et l’échange d’information, la disponibilité de l’information, la personnalisation du contenu ainsi que le feedback en temps réel.

Il est également important de bien différencier l’interactivité entres les personnes et l’interactivité entre les machines.

La première désigne comme son nom l’indique la faculté de d’interagir et de communiquer avec d’autres humains tandis que la deuxième désigne la capacité d’une personne à accéder à une base de données en ligne. C’est d’ailleurs le point central de cette étude.

Le postulat de base est que le comportement du consommateur dépend grandement du type d’interactivité proposé dans un environnement d’achat en ligne donné. Ces outils d’interactivité font ici référence à l’aide à la décision interactive mentionné dans le titre de l’article.

Ainsi, l’organisation de cet article est la suivante :

  1. Compréhension du processus de décision et de l’aide à la décision
  2. Compréhension des aides interactives dans le cadre des achats en ligne



Compréhension du processus de décision et de l’aide à la décision :

Les humains adaptent leurs stratégies de prise de décisions aux situations et à l’environnement. Payne en 1982, Shugan en 1980 et Bettman 1990 démontrent que les hommes cherchent à réduire l’effort cognitif associé à la prise de décision. Ainsi ils se conforment à une précision imparfaite de leurs décisions en retour d’une réduction de l’effort.
Ce rapport entre effort et précision entraine souvent la prise d’une décision satisfaisante. C’est particulièrement le cas lorsque les alternatives sont nuisibles ou difficiles à comparer, c’est-à-dire lorsque la compléxité de l’environnement de décision est élevée.

Ainsi lorsque l’homme fait face à ce genre d’environnement de décision complexe, il peut utiliser une technologie informatique d’aide à la décision. Ils effectuent des taches ou des fonctions de traitement d’informations distinctes. Le principe de motivation qui sous-tend les aides à la décision est que les tâches de traitement de l’information, à forte intensité de ressources, mais standard, sont effectuées par un système informatique, ce qui libère une partie de la capacité de traitement des décideurs humains. Le travail est donc partager entre l’humain et l’ordinateur.

Nous allons maintenant voir un aperçu général des aides à la décision interactive disponibles pour les consommateurs dans le but de faire des achats en ligne.

Compréhension des aides interactives dans le cadre de l’achat en ligne :

La technologie disponible pour la mise en œuvre de l’interactivité des machines dans les environnements commerciaux en ligne est une formidable opportunité pour une entreprise de pallier l’absence de contact physique avec les produits ainsi que l’absence d’interaction en face à face avec un vendeur.

Les aides à la décisions interactives peuvent prendre différentes formes allant des moteurs de recherche à vocation générale à l’agent sophistiqué. Une classification des agents d’achats interactifs repose sur la question de savoir si un outil es conçu pour aider un consommateur à déterminer ce qu’il faut acheter ou, ou il faut l’acheter.

Un phénomène bien connu concernant la prise de décision dans des environnements complexes est que les individus sont souvent incapables d’évaluer toutes les alternatives disponibles en profondeur avant de faire un choix.

Dans le cadre de la décision d’achat le processus de décision le consommateur identifie dans un premier temps un large éventail de produits pertinent sans les examiner en profondeur et un sous ensemble qui comprend les solutions de rechange les plus pertinentes. Ensuite, il évalue ce dernier en profondeur en comparant les caractéristiques des produis avant de prendre sa décision d’achat.

Ainsi dans le cadre de l’aide à la décision, les outils interactifs peuvent apporter un soutien au consommateur dans les cas suivants :

  • Le dépistage initial des produits disponibles pour déterminer ceux qui valent le plus la peine d’être examinés en premiers.
  • La comparaison approfondie des produits sélectionnés avant de prendre la décision d’achat réelle.

Dans le cas de cette étude, il a été décidé de se concentrer sur deux outils interactifs.

L’agent de recommandation : Un outil de sélection de solution de rechange :

L’agent de recommandation a pour objectif de dépister initialement des alternatives disponibles dans une boutique en ligne. La RA utilisée dans la présente étude génère une liste personnalisée d’alternatives recommandées, dans lesquelles des alternatives sont décrites par leur marque et leur nom de modèle.

Une matrice de comparaison :

La matrice de comparaison est conçue pour permettre aux acheteurs de comparer les produits plus efficacement et de manière appropriée. Il permet au consommateur d’ajouter un produit à sa propre matrice afin que ses caractéristiques soient comparées aux autres produits de cette matrice. Ainsi le consommateur peut faire son choix en se basant uniquement sur certaines caractéristiques les plus pertinentes. Le format est interactif dans la mesure ou l’homme présélectionne et la machine facilite le processus de décision d’achat. De plus la machine met l’accent sur la mémorisation des produits et facilite donc le choix du consommateur.


Une des caractéristiques de l’environnement commercial électroniques est la quasi absence de limites physiques en ce qui concerne l’affichage du produit. Ainsi un commerce en ligne offrira un nombre extrêmement élevé de solutions de rechange dans une catégorie de produits.
C’est évidemment un plus pour le consommateur qui a plus de choix que dans un magasin physique.

Néanmoins, les ressources cognitives limitées du consommateur ne lui permettent pas de traiter les quantités potentiellement importantes d’informations sur ces alternatives.

C’est la raison pour laquelle les aides à la décisions interactives dont le but est d’aider à gérer efficacement et à capitaliser sur les grandes quantités d’informations à disposition dans un environnement d’achat en ligne.

Cette étude avait donc pour but d’étudier les effets des agents de recommandation ainsi que des matrices de comparaison. Le premier aide les consommateurs dans le dépistage initial des alternatives tandis que le second facilite les comparaisons approfondies d’alternatives sélectionnées.

Ainsi l’étude menée permet de mettre en exergue l’impact important sur la quantité de recherches d’informations sur les produits, la taille et la qualité des ensemble de considérations des acheteurs et la qualité de leurs décisions d’achat.

Partant du principe bien établit qu’il existe un compromis entre effort et précision inhérent à la prise de décision humaine dans les environnements traditionnels, nous pouvons constater que des outils tel que les agents de recommandations et les matrices de comparaison permettent au consommateur d’améliorer la qualité de sa décision tout en réduisant ses efforts. De fait cette étude démontre que les outils d’aides à la décision interactifs ont un impact stratégique sur la façon dont les consommateurs recherchent des informations sur les produits et prennent des décisions d’achat.

Mobile marketing research: The-state-of-art

Varnali, K., & Toker, A (2010). Mobile marketing research: The-state-of-art. International Journal of Information Management, 30 (2), 144-151

Mots clés : Mobile marketing, Mobile consumer behavior, Mobile marketing research, Mobile commerce, Mobile business

Depuis les années 2000, le canal Mobile est le canal publicitaire ultime car il permet aux entreprises d’être toujours présent auprès de ses consommateurs, à tout moment de la journée et n’importe où. Ainsi, les articles académiques sur le sujet se multiplient et s’accumulent.

Dans cet article, K. Varnali et A. Toker organisent et classifient la littérature existante sur le marketing mobile. Ils couvrent 255 articles, tirés de 82 journaux, publiés entre les années 2000 et 2008.

  • Dans un premier temps, nous allons identifier la méthode utilisée par K. Varnali et A. Toker pour identifier les articles en relation avec le marketing mobile.
  • Nous identifierons ensuite l’organisation et la classification de ces articles.


Développement :

Tous les articles sur le marketing mobile sont dispersés entre des journaux aux disciplines très variées comme le management, le marketing ou encore la technologie.
Ainsi pour répertorier tous les articles existants sur le marketing mobile, différentes bases de données en ligne ont été utilisées : ABI/INFORM, EBSCOhost, Emerald, IEEE Xplore, Inderscience Publishers, Science Direct and Wiley Interscience.
La recherche de littérature a été basée sur les mots clés suivants : « mobile commerce », « mobile marketing », « m-commerce », « m-marketing », « mobile advertising », « m-advertising », « mobile consumer », « m-consumer », « mobile business », « m-business », « mobile services », « m-services », « SMS marketing » and « Short Message Service Marketing ».
Tous les articles trouvés qui ne traitaient pas du marketing mobile ont été éliminés.

Ainsi, 255 articles, tirés de 82 journaux ont été sélectionnés.

Ensuite ces articles ont été classifiés selon leur orientation et leur point de vue. K. Varnali et A. Toker proposent donc la classification suivante :

  • Théorie (44 articles) : Les articles présents dans cette catégorie sont essentiellement des articles expliquant le concept de marketing mobile, la différence entre le e-commerce et le m-commerce et les dimensions du marché du mobile.
  • Stratégie (73 articles) : Cette catégorie est elle-même organisée en deux parties :
    • Stratégie : Les articles présents dans cette catégorie adoptent une perspective stratégique et se concentrent principalement sur les problèmes de design dans les business models des mobiles.
    • Applications : Dans cette catégorie se trouvent les articlent qui se concentrent sur les problèmes de design et les fonctionnalités des applications mobiles et spéculent sur leur potentiel.


  • Comportement du consommateur (131 articles) : Ces articles permettent de comprendre l’adoption du marketing mobile et la prédiction du comportement de consommateur face au marketing mobile.
    Cette catégorie est elle-même divisée en 5 catégories :

    • Le marketing mobile perçu par le consommateur
    • L’adoption et l’acceptation du m-marketing
    • Attitude des consommateurs face au marketing mobile
    • Le rôle de la confiance
    • La satisfaction et la loyauté du consommateur dans le contexte du marketing mobile.


  • Politique légale et publique (7 articles) : Les articles de cette catégorie se concentrent sur les problèmes politiques et légaux dans le contexte du marketing mobile. « Le mobile marketing en un problème important en terme de politique du consommateur à cause de deux caractéristiques de la technologie de communication mobile : (1) La permission d’identification des utilisateurs individuels dépend de l’appareil et de la technologie, cela menace la vie privée et la sécurité des informations personnelles, (2) les taux de pénétration élevés, en particulier chez les mineurs.

En conclusion, K. Varnali et A. Toker soulignent bien qu’il n’y a pas de classification communément accepté pour le marketing mobile et qu’il n’y a pas encore de « définition explicite du marketing mobile qui capture la véritable nature du phénomène ».


Références :

  • Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J.Kuhl, & J. Beckmann (Eds.),Action control: From cognition to behavior. New York:Springer-Verlag.
  • Anckar, B., & D’Incau, D. (2002). Value creation in mobile commerce: Findings from a consumer survey. Journal of Information Technology Theory and Application, 4 (1),43–65.
  • Aungst, S. G., & Wilson, D. T. (2005). A primer for navigating the shoals of applying wireless technology to marketing problems. The Journal of Business & IndustrialMarketing,20(2/3), 59–70.
  • Balasubramanian, S., Peterson, R. A., & Jarvenpaa, S. L. (2002). Exploring the implications of m-commerce for markets and marketing. Journal of the Academy of Marketing Science,30(4), 348–361.
  • Barnes, S. J. (2002a). The mobile commerce value chain: Analysis and future developments. International Journal of Information Management, 22 (2), 91–108.
  • Barnes, S. J. (2002b). Provision of services via the wireless application protocol: A strategic perspective. Electronic Markets, 12(1), 14–21.
  • Barnes, S. J. (2003a). Developments in the M-commerce value chain: Adding value with location-based services. Geography,88(4), 277.
  • Barnes, S. J. (2003b). Location-based services: The state of the art. E-Service Journal,2 (3), 59–71.
  • Barnes, S. J., & Scornavacca, E. (2004). Mobile marketing: The role of permission and acceptance. International Journal of Mobile Communications, 2 (2), 128–139.
  • Barutcu, S. (2007). Attitudes towards mobile marketing tools: A study of Turkish consumers. Journal of Targeting, Measurement and Analysis for Marketing, 16, 26–38.
  • Bauer, H. H., Reichardt, T., Barnes, S. J., & Neumann, M. M. (2005). Driving consumer acceptance of mobile marketing: A theoretical framework and empirical study. Journal of Electronic Commerce Research, 6 (3), 181–192.
  • Bauer,H.H.,Reichardt,T.,Exler,S.,&Tranka,E.(2007).Utility-baseddesignofmobile ticketing applications—A conjoint-analytical approach. International Journal of Mobile Communications, 5 (4), 457–473.
  • Bayartsaikhan, K., Danielak, P., Dunst, K., Guibert, J., Luxford, L., Romanossian, R., et al. (2007). Market for third screen: A study of market potential of mobile TV and video across the U.S. and selected European countries. International Journal of Mobile Marketing, 2 (1), 12–27.
  • Becker, D. (2007). Participation TV: Premium SMS vs. toll-free IVR. International Journal of Mobile Marketing, 2 (2), 50–52.
  • Bertelè, U., Rangone, A., & Renga, F. (2002). Mobile internet: An empirical study of B2C WAP applications in Italy. Electronic Markets, 12 (1), 27–37. 150
  • Varnali, A. Toker / International Journal of Information Management 30 (2010) 144–151
  • Bhatti, T. (2007). Exploring factors influencing the adoption of mobile commerce. Journal of Internet Banking and Commerce, 12(3), 2–13.
  • Bigne, E., Ruiz, C., & Sanz, S. (2005). The impact of internet user shopping patterns and demographics on consumer mobile buying behaviour. Journal of Electronic Commerce Research, 6 (3), 193–210.
  • Bigné, E., Ruiz, C., & Sanz, S. (2007). Key drivers of mobile commerce adoption: Anexploratory study of Spanish mobile users. Journal of Theoretical and Applied Electronic Commerce Research, 2 (2), 48–61.
  • Bruner, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of Business Research, 58 (5), 553–558.
  • Carroll, A., Barnes, S. J., Scornavacca, E., & Fletcher, K. (2007). Consumer perceptions and attitudes towards SMS advertising: recent evidence from NewZealand. International Journal of Advertising, 26 (1), 79–98.
  • Chae, M., Kim, J., Kim, H., & Ryu, H. (2002). Information quality for mobile internet services: A theoretical model with empirical validation. Electronic Markets, 12 (1), 38–46.
  • Chen, J. V., Ross, W., & Huang, S. F. (2008). Privacy, trust, and justice considerations for location-based mobile telecommunication services. Info: the Journal of Policy, Regulation and Strategy for Telecommunications, Information and Media, 10 (4), 30.
  • Chen, L. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6 (1), 32–52.
  • Choi, J., Seol, H., Lee, S., Cho, H., & Park, Y. (2008). Customer satisfaction factors of mobile commerce in Korea. Internet Research, 18 (3), 313–335.
  • Chowdhury, H. K., Parvin, N., Weitenberner, C., & Becker, M. (2006). Consumer attitude toward mobile advertising in an emerging market: An empirical study. International Journal of Mobile Marketing, 1(2), 33–42.
  • Clarke, I. (2001). Emerging value propositions for M-commerce. Journal of Business Strategies, 18 (2), 133–149.
  • Coursaris, C., Hassanein, K., & Head, M. (2003). M-commerce in Canada: An interaction framework for wireless privacy. Canadian Journal of Administrative Sciences, 20 (1), 54–74.
  • Cyr,D.,Head,M.,&Ivanov,A.(2006).Designaestheticsleadingtom-loyaltyinmobile commerce. Information & Management, 43 , 950–963.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance
  • of information technology. MIS Quarterly, 13 (3), 319–340.
  • DeBaillon,L.,&Rockwell,P.(2005).Genderandstudent-statusdifferencesincellulartelephone use. International Journal of Mobile Communications, 3 (1), 82–98. Denk, M., & Hackl, M. (2004). Where does mobile business go? International Journal of Electronic Business , 2 (5), 480.
  • Dholakia, R. R., & Dholakia, N. (2004). Mobility and markets: Emerging outlines of M-commerce. Journal of Business Research, 57, 1391–1396.
  • Dolian, B. (2008). Text-to-screen emerges: A conceptual approach to a powerful interactive marketing tool. International Journal of Mobile Marketing, 3 (1),81–85.
  • Doolin, B., & Ali, E. A. H. (2008). Adoption of mobile technology in the supply chain: An exploratory cross-case analysis. International Journal of E-Business Research, 4 (4), 1–16.
  • eMarketer (2007). Mobile brand advertising. October, 21 pp.
  • Fishbein,M.,&Ajzen,I.(1975). Beliefs, attitude, intention and behavior: An introduction to theory and research . Reading: Addison-Wesley.
  • Fouskas, K. G., Giaglis, G. M., Kourouthanassis, P. E., Karnouskos, S., Pitsillides, A., & Stylianou, M. (2005). A roadmap for research in mobile business. International Journal of Mobile Communications, 3 (4), 350–373.
  • Frolick, M. N., & Chen, L. (2004). Assessing M-commerce opportunities. Information Systems Management, 21 (2), 53–62.
  • Gressgard, L. J., & Stensaker, I. (2006). The mobile service industry: Strategic challenges and future business models. International Journal of Mobile Communications, 4 (5), 509–531.
  • Haaker, T., Faber, E., & Bouwman, H. (2006). Balancing customer and network value in business models for mobile services. International Journal of Mobile Communications, 4 (6), 645–661. Haghirian, P., & Inoue, A. (2007). An advanced model of consumer attitudes toward advertising on the mobile internet. International Journal of Mobile Communications, 5 (1), 48–67.
  • Hairong,L.,& Stoller,B.(2007).Parameters of mobile advertising: A field experiment. International Journal of Mobile Marketing, 2 (1), 4–11.
  • Hanley, M., Becker, M., & Martinsen, J. (2006). Factors influencing mobile advertising acceptance: Will incentives motivate college students to accept mobile advertisements? International Journal of Mobile Marketing, 1 (1), 50–58.
  • Harris, P., Rettie, R., & Kwan, C. C. (2005). Adoption and usage of M-commerce: A cross-cultural comparison of Hong Kong and the United Kingdom. Journal of Electronic Commerce Research, 6 (3), 210–225.
  • Heinonen, K., & Strandvik, T. (2007). Consumer responsiveness to mobile marketing. International Journal of Mobile Communications, 5 (6), 603–617.
  • Heller, N. E. (2006). Growth of mobile multimedia advertising. International Journal of Mobile Marketing , 1 (1), 41–49.
  • Hosbond,J.H.,&Skov,M.B.(2007).Micromobilitymarketing:Two cases on location based supermarket shopping trolleys. Journal of Targeting, Measurement and Analysis for Marketing, 16 (1), 68–78.
  • Hsu, H., Lu, H., & Hsu, C. (2008). Multimedia messaging service acceptance of pre-and post-adopters: A sociotechnical perspective. International Journal of MobileCommunications, 6 (5), 598–615. Jarvenpaa, S. L., Lang, K. R., Takeda, Y., & Tuunainen, V. K. (2003). Mobile commerce at crossroads. Communications of the ACM , 46 (12), 41–44.
  • Junglas, I. A., Johnson, N. A., & Spitzmüller, C. (2008). Personality traits and concern for privacy: An empirical study in the context of location-based services. European Journal of Information Systems, 17 (4), 387–403.
  • Karjaluoto, H., & Alatalo, T. (2007). Consumers attitudes towards and intention toparticipate in mobile marketing.International Journal of Services Technology and Management, 8 (2/3), 155.
  • Karjaluoto, H., Lehto, H., Leppäniemi, M., & Jayawardhena, C. (2008). Exploring gender influence on customer’s intention to engage permission-based mobile marketing. Electronic Markets, 18 (3), 242. Karjaluoto, H., Standing, C., Becker, M., & Leppaniemi, M. (2008). Factors affecting Finnish consumers’ intention to receive SMS marketing: a conceptual model and an empirical study. International Journal of Electronic Business, 6 (3), 298.
  • Karp, G. (2007). Mobile marketing and interactive promotions on mobile devices: Navigating legal hurdles. International Journal of Mobile Marketing, 2 (2), 78–85.
  • Khalifa, M., & Shen, K. N. (2008). Drivers for transactional B2C M-commerce adoption: Extended theory of planned behavior. The Journal of Computer Information Systems, 48 (3), 111–117.
  • Kim, D. J., & Hwang, Y. (2006). A study of mobile internet usage from utilitarian and hedonic user tendency perspectives. In
  • Proceedings of the Twelfth Americas Conference on Information Systems
  • Kim, H., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: An empirical investigation.Decision Support Systems, 43 (1), 111–126.
  • Kim, H., Lee, I., & Kim, J. (2008). Maintaining continuers vs. converting discontinuers: relative importance of post-adoption factors for mobile data services. International Journal of Mobile Communications , 6 (1), 108–132.
  • Kleijnen, M., Ruyter, K., & Wetzels, M. (2004). Consumer adoption of wireless services: Discovering the rules, while playing the game. Journal of Interactive Marketing, 18 (2), 51–62.
  • Kleijnen, M., Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the moderating role of time consciousness. Journal of Retailing, 83 (1), 33–46.
  • Knutsen, L. A. (2005). M-service expectancies and attitudes: Linkages and effects of first impressions. InProceedings of the 38th Annual Hawaii International Conference on System Sciences (p. 84).
  • Komulainen, H., Mainela, T., Tähtinen, J., & Ulkuniemi, P. (2007). Retailers’, different value perceptions of mobile advertising service. International Journal of Service Industry Management, 18 (4), 368–393.
  • Kondo, F. N., & Nakahara, M. (2007). Differences in customers’ responsiveness to mobile direct mail coupon promotions. International Journal of Mobile Marketing, 2 (2), 68–74.
  • Kumar, S., & Stokkeland, J. (2003). Evolution of GPS technology and its subsequent use in commercial markets. International Journal of Mobile Communications, 1 (1/2), 180–193.
  • Kumar, S., & Zahn, C. (2003). Mobile communications: Evolution and impact on business operations. Technovation, 23 (6), 515–521.
  • Laukkanen, T. (2005). Consumer value creation in mobile banking services. International Journal of Mobile Communications, 3 (4), 325–338.
  • Lee, C., Cheng, H. K., & Cheng, H. (2007). An empirical study of mobile commerce in insurance industry: Task-technology fit and individual differences. Decision Support Systems, 43 (1), 95–110.
  • Lee, R., & Murphy, J. (2006). The consumption of mobile services by Australian University Students. International Journal of Mobile Marketing, 1 (1), 13–20.
  • Lee,T.(2005).The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce. Journal of Electronic Commerce Research, 6 (3), 165–181.
  • Lee, T., & Jun, J. (2007). The role of contextual marketing offer in mobile commerce acceptance: Comparison between mobile commerce users and nonusers. International Journal of Mobile Communications, 5 (3), 339–356.
  • Lee, Y., Kim, J., Lee, I., & Kim, H. (2002). A cross-cultural study on the value structure of mobile internet usage: Comparison between Korea and Japan. Journal of Electronic Commerce Research, 3 (4), 227–239.
  • Lembke, J. (2002). Mobile commerce and the creation of a marketplace. Info: the Journal of Policy, Regulation and Strategy for Telecommunications, Information and Media, 4 (3), 50–56.
  • Leong, L. (2005). U-Commerce: Introducing the new challenges for e-business. International Journal of Services Technology and Management, 6 (1), 72–75.
  • Leppäniemi, M., Sinisalo, J., & Karjaluoto, H. (2006). A review of mobile marketing research. International Journal of Mobile Marketing, 1 (1), 30–40. Lin,H.-H.,&Wang,Y.-S.(2006).An examination of the determinants of customer loyalty in mobile commerce contexts. Information & Management, 43 (3), 271–282.
  • Lu, J., Yu, C., Liu, C., & Ku, C. Y. (2004). Wireless trust: Conceptual and operational definition. International Journal of Mobile Communications, 2 (1), 38–50. Luarn, P., & Lin, H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21 , 873–891.
  • Maamar, Z. (2003). Commerce, e-commerce and m-commerce: What comes next? Communications of the ACM, 46(12), 251–257.
  • MacInnes, I., Moneta, J., Caraballo, J., & Sarni, D. (2002). Business models for mobile content: The case of m-games. Electronic Markets, 12 (4), 218–227.
  • Magura, B. (2003). What hooks m-commerce customers? MIT Sloan Management Review, 44 (3), 9–16.
  • Mahatanankoon, P. (2007). The effects of personality traits and optimum stimulation level on text-messaging activities and m-commerce intention. International Journal of Electronic Commerce , 12 (1), 7–30.
  • Mahatanankoon, P., Wen, H. J., & Lim, B. (2005). Consumer-based m-commerce: exploring consumer perception of mobile applications. Computer Standards & Interfaces, 27 (4), 347–357.
  • Malladi, R., & Agrawal, D. P. (2002). Current and future applications of mobile and wireless networks. Communications of the ACM, 45 (10), 144–146.
  • Varnali, A. Toker / International Journal of Information Management 30 (2010) 144–151 151
  • Maneesoonthorn, C., & Fortin, D. (2006). Texting behavior and attitudes toward permission mobile advertising: An empirical study of mobile users’ acceptance of SMS for marketing purposes. International Journal of Mobile Marketing, 1 (1), 66–72.
  • Marez, L., Vyncke, P., Berte, K., Schuurman, D., & Moor, K. (2007). Adopter segments, adoption determinants and mobile marketing. Journal of Targeting, Measurement and Analysis for Marketing , 16 (1), 78–96.
  • Merisavo, M., Vesanen, J., Arponen, A., & Kajalo, S. (2006). The effectiveness of targeted mobile advertising in selling mobile services: an empirical study. International Journal of Mobile Communications, 4 (2), 119–127.Milne, G. R., & Rohm, A. J. (2003). The 411 on mobile privacy. Marketing Management, 12 (4), 40–45.
  • Min, Q., & Ji, S. (2008). A meta-analysis of mobile commerce research in China (2002–2006). International Journal of Mobile Communications, 6 (3), 390–403.
  • Mort, G. S., & Drennan, J. (2002). Mobile digital technology: Emerging issues for marketing. Journal of Database Marketing, 10 (1), 9–24.
  • Muk, A. (2007). Cultural influences on adoption of SMS advertising: A study of American and Taiwanese consumers.
  • Journal of Targeting, Measurement and Analysis for Marketing, 16 , 39–47.
  • Nerger, P. (2008). Breaking free from ‘DOTCOM THINKING’ in a mobile world. International Journal of Mobile Marketing, 3 (1), 19–22.
  • Newell, J., & Meier, M. (2007). Desperately seeking optinC : A field report from a student led mobile marketing initiative.
  • International Journal of Mobile Marketing, 2 (2), 53–57.
  • Ngai, E. W. T., & Gunasekaran, A. (2007). A review for mobile commerce research and applications. Decision Support Systems, 43, 3–15.
  • Nohria, N., & Leestma, M. (2001). A moving target: The mobile-commerce customer. MIT Sloan Management Review,42 (3), 104–105.
  • Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the Academy of Marketing Science , 33 (3), 330–347.
  • Okazaki, S. (2004). How do Japanese consumers perceive wireless ads? A multivariate analysis. International Journal of Advertising, 23 (4), 429–454.
  • Okazaki, S. (2005a). Mobile advertising adoption by multinationals. Internet Research, 15 (2), 160–180.
  • Okazaki,S.(2005b).Newperspectivesonm-commerceresearch. Journal of Electronic Commerce Research , 6 (3), 160–165.
  • Okazaki, S., Katsukura, A., & Nishiyama, M. (2007). How mobile advertising works: The role of trust in improving attitudes and recall. Journal of Advertising Research , 47 (2), 165–178.
  • Okazaki, S., & Taylor, C. R. (2008). What is SMS advertising and why do multinationals adopt it? Answers from an empirical study in European markets. Journal of Business Research , 61 (1), 4–12.
  • Oliva, R. A. (2003). Going mobile. Marketing Management, 12 (4), 46–48.
  • Ondrus, J., & Pigneur, Y. (2006). Towards a holistic analysis of mobile payments: A multiple perspectives approach. Electronic Commerce Research and Applications, 5 (3), 246–257.
  • Pagani, M. (2004). Determinants of adoption of third generation mobile multimedia services. Journal of Interactive Marketing, 18(3), 46.
  • Park, C. (2006). Hedonic and utilitarian values of mobile internet in Korea. International Journal of Mobile Communications, 4 (5), 497–508.
  • Park, J., & SuJin, Y. (2006). The moderating role of consumer trust and experiences: Value driven usage of mobile technology. International Journal of Mobile Marketing, 1 (2), 24–32.
  • Pedersen, P. E. (2005). Adoption of mobile Internet services: An exploratory study of mobile commerce early adopters. Journal of Organizational Computing and Electronic Commerce, 15 (2), 203–222.
  • Petty, R. D. (2003). Wireless advertising messaging: Legal analysis and public policy issues. Journal of Public Policy & Marketing, 22 (1), 71–82.
  • Pihlström, M. (2007). Committed to content provider or mobile channel? Determinants of continuous mobile multimedia service use. Journal of Information Technology Theory and Application, 9 (1), 1–24.
  • Pura, M. (2005). Linking perceived value and loyalty in location-based mobile services. Managing Service Quality, 15
  • (6), 509–539.
  • Ramkumar, G. D. (2007). Image recognition as a method for opt-in and applications for mobile marketing. International Journal of Mobile Marketing, 2 (2), 42–49.
  • Rao, B., & Minakakis, L. (2003). Evolution of mobile location-based services. Communications of the ACM, 46 (12), 61–65.
  • Ratten,V.(2008).Technologicalinnovationsinthem-commerceindustry:Aconceptual model of WAP banking intentions. Journal of High Technology Management Research, 18, 111–117.
  • Rettie, R., Grandcolas, U., & Deakins, B. (2005). Text message advertising: Response rates and branding effects. Journal of Targeting, Measurement and Analysis for Marketing , 13 (4), 304–313.
  • Rogers, E. M. (1983).The diffusion of innovation New York: Free Press.
  • Rohm, A. J., & Sultan, F. (2006). An exploratory cross-market study of mobile mar- keting acceptance. International Journal of Mobile Marketing , 1 (1), 4–12.
  • Salo, J., & Karjaluoto, H. (2007). Mobile games as an advertising medium: Towards a new research agenda. Innovative Marketing, 3 (1), 71–84.
  • Scharl, A., Dickinger, A., & Murphy, J. (2005). Diffusion and success factors of mobile marketing. Electronic Commerce Research and Applications, 4 (2), 159–173.
  • Scornavacca, E., Barnes, S. J., & Huff, S. L. (2006). Mobile business research published in 2000–2004: Emergence, current status and future opportunities. Communications of AIS, 17 , 2–19.
  • Scornavacca, E., & McKenzie, J. (2007). Unveiling managers’ perceptions of the critical success factors for SMS based campaigns. International Journal of Mobile Communications , 5 (4), 445–456.
  • Senn, J. A. (2000). The emergence of m-commerce. Computer, 33 (12), 148–151.
  • Shugan, S. M. (2004). The impact of advancing technology on marketing and academic research. Marketing Science , 23 (4), 469–476.
  • Siau, K., Lim, E., & Shen, Z. (2001). Mobile commerce: Promises, challenges, and research agenda. Journal of Database Management, 12 (3), 4–14.
  • Stafford, T. F., & Gillenson, M. L. (2003). Mobile commerce: What it is and what it could be? Communications of the ACM, 46 (12), 33–34.
  • Steinbock, D. (2006). The missing link: Why mobile marketing is different? International Journal of Mobile Marketing, 1 (1), 83–94.
  • Sultan, F., & Rohm, A. (2005). The coming era of “Brand in the Hand” marketing. MIT Sloan Management Review , 47 (1), 83–90.
  • Sultan, F., & Rohm, A. J. (2008). How to market to generation m(obile). MIT Sloan Management Review , 49 (4), 35–41.
  • Sundqvist, S., Frank, L., & Puumalainen, K. (2005). The effects of country characteristics, cultural similarity and adoption timing on the diffusion of wireless communications. Journal of Business Research, 58 (1), 107–110.
  • Suoranta, M., & Mattila, M. (2004). Mobile banking and consumer behaviour: New insights into the diffusion pattern. Journal of Financial Services Marketing, 8 (4), 354. Swilley, E., & Hofacker, C. F. (2006). Defining mobile commerce in a marketing con-text. International Journal of Mobile Marketing, 1 (2), 18–23.
  • Tsang, M. M., Ho, S., & Liang, T. (2004). Consumer attitudes toward mobile advertising: An empirical study. International Journal of Electronic Commerce, 8 (3),65–78.
  • Vatanparast, R., & Asil, M. (2007). Factors affecting the use of mobile advertising. International Journal of Mobile Marketing, 2 (2), 21–34.
  • Watson, R. T., Pitt, L. F., Berthon, P., & Zinkhan, G. M. (2002). U-commerce: Expanding the universe of marketing. Academy of Marketing Science Journal, 30 (4), 333–348.
  • Weitenberner, C., Chapman, M., Miranda, G., Tobar, S., Wagoner, E., & Akasaki, D. (2006). United States and south East Asian Mobile Markets: A comparative analysis of infrastructure and cultural differences. International Journal of Mobile Marketing, 1 (1), 73–82.
  • Wen, H. J., & Mahatanankoon, P. (2004). M-commerce operation modes and applications. International Journal of Electronic Business, 2 (3), 301.
  • Worthy, J., & Graham, N. (2002). Electronic marketing: New rules for electronic marketing—An obstacle to m-commerce? Computer Law & Security Report, 18 (2), 106–109.
  • Wu,J.H.,&Hisa,T.L.(2008).Developinge-businessdynamiccapabilities:Ananalysis of e-commerce innovation from I-, M-, to U-commerce. Journal of Organizational Computing and Electronic Commerce, 18, 95–111.
  • Wu, J., & Wang, S. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42 (5), 719–729.
  • Xu, D. J. (2006/2007). The influence of personalization in affecting consumer attitudes toward mobile advertising in China. The Journal of Computer Information Systems, 47(2), 9–20.
  • Yang, K. C. C. (2005). Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics & Informatics, 22 (3), 257–277. Zhang, J., & Mao, E. (2008). Understanding the acceptance of mobile SMS advertising among young Chinese consumers. Psychology & Marketing, 25(8), 787–805.