Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products

Sun X, Han M, Feng J, (2019), Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products, Decision Support Systems, Volume 124, September 2019, 113099

Mots clés : Avis en ligne, Recherche de produits, Découverte de produits, Prédiction de l’utilité

Résumé : La surcharge d’informations rend souvent difficile pour les consommateurs d’identifier les avis de produits en ligne utiles grâce à la fonction traditionnelle de « votes utiles»; par conséquent, il est devenu particulièrement important d’identifier efficacement les avis utiles. En différenciant les produits de recherche des produits d’expérience, cette recherche examine l’impact de différentes mesures de l’information communiquée par les avis sur l’utilité des avis et propose différents seuils de classification pour identifier individuellement l’utilité des avis en ligne pour les produits de recherche et pour les produits d’expérience, respectivement. Toutes les expériences ont été menées à l’aide d’un ensemble de données de, l’un des plus grands marchés électroniques en ligne en Chine. Nos résultats offrent des lignes directrices pour concevoir différentes normes de classification de l’utilité pour les produits de recherche et pour les produits d’expérience.

Grandes lignes :

  • Les différences entre les produits de recherche et les produits d’expérience modèrent la perception des consommateurs quant à l’utilité des avis.
  • Nous confirmons différents seuils de classification pour les produits de recherche et d’expérience.
  • Amélioration des performances de classification grâce à nos variables et seuils proposés
  • Le nombre d’attributs et la longueur moyenne des attributs mesurent le caractère informatif de l’examen.

[1] N. Archak, A. Ghose, P.G. Ipeirotis, Deriving the pricing power of product features
by mining consumer reviews, Management Science 57 (8) (2011) 1485–1509.
[2] L. Baruh, Z. Cemalcılar, When more is more? The impact of breadth and depth of
information disclosure on attributional confidence about and interpersonal attraction to a social network site profile owner, Cyberpsychology: Journal of
Psychosocial Research on Cyberspace 12 (1) (2018).
[3] A. Benlian, R. Titah, T. Hess, Differential effects of provider recommendations and
consumer reviews in e-commerce transactions: an experimental study, Journal of
Management Information Systems 29 (1) (2012) 237–272.
[4] L.A. Book, S. Tanford, W. Chang, Customer reviews are not always informative: the
impact of effortful versus heuristic processing, Journal of Retailing and Consumer
Services 41 (2018) 272–280.
[5] Q. Cao, W. Duan, Q. Gan, Exploring determinants of voting for the “helpfulness” of
online user reviews: a text mining approach, Decision Support Systems 50 (2)
(2011) 511–521.
[6] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning
algorithms using different performance metrics, Proc. 23rd International
Conference Machine Learning (ICML ’06), 2006, pp. 161–168.
[7] Y. Chi, X. Tang, Y. Lian, X. Dong, Y. Liu, A supernetwork-based online post informative quality evaluation model, Knowledge-Based Systems 168 (2019) 10–24.
[8] A.Y.K. Chua, S. Banerjee, Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth, Journal of the Association for
Information Science and Technology 66 (2) (2015) 354–362.
[9] A.Y.K. Chua, S. Banerjee, Helpfulness of user-generated reviews as a function of
review sentiment, product type and information quality, Computers in Human
Behavior 54 (2016) 547–554.
[10] S.P. Eslami, M. Ghasemaghaei, K. Hassanein, Which online reviews do consumers
find most helpful? A multi-method investigation, Decision Support Systems 113
(2018) 32–42.
[11] R. Filieri, What makes online reviews helpful? A diagnosticity-adoption framework
to explain informational and normative influences in e-WOM, Journal of Business
Research 68 (6) (2015) 1261–1270.
[12] R. Filieri, F. McLeay, B. Tsui, Z. Lin, Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services, Information & Management 55 (2018) 956–970.
[13] B.J. Fogg, J. Marshall, O. Laraki, A. Osipovich, C. Varma, N. Fang, J. Paul,
A. Rangnekar, J. Shon, P. Swani, M. Treinen, What makes web sites credible? A
report on a large quantitative study, Proceedings of the SIGCHI Conference on
Human Factors in Computing, 2001, pp. 61–68.
[14] C. Forman, A. Ghose, B. Wiesenfeld, Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets, Information
Systems Research 19 (3) (2008) 291–313.
[15] A. Ghose, P.G. Ipeirotis, Estimating the helpfulness and economic impact of product
reviews: mining text and reviewer characteristics, IEEE Transactions on Knowledge
and Data Engineering 23 (10) (2011) 1498–1512.
[16] T. Girard, P. Dion, Validating the search, experience, and credence product classification framework, Journal of Business Research 63 (9–10) (2010) 1079–1087.
[17] H. Hong, D. Xu, G.A. Wang, W. Fan, Understanding the determinants of online
review helpfulness: a meta-analytic investigation, Decision Support Systems 102
(2017) 1–11.
[18] Y.K. Hong, P.A. Pavlou, Product fit uncertainty in online markets: nature, effects,
and antecedents, Information Systems Research 25 (2) (2014) 328–344.
[19] Y.-H. Hu, K. Chen, Predicting hotel review helpfulness: the impact of review visibility, and interaction between hotel stars and review ratings, International Journal
of Information Management 36 (6) (2016) 929–944.
[20] A.H. Huang, K. Chen, D.C. Yen, T.P. Tran, A study of factors that contribute to
online review helpfulness, Computers in Human Behavior 48 (2015) 17–27.
[21] A.H. Huang, D.C. Yen, Predicting the helpfulness of online reviews: a replication,
International Journal of Human Computer Interaction 29 (2) (2013) 129–138.
[22] L. Huang, C.-H. Tan, W. Ke, K.-K. Wei, Comprehension and assessment of product
reviews: a review-product congruity proposition, Journal of Management
Information Systems 30 (3) (2013) 311–343.
[23] L. Huang, C.-H. Tan, W. Ke, K.-K. Wei, Do we order product review information
display? How? Information & Management 51 (7) (2014) 883–894.
[24] F.R. Jiménez, N.A. Mendoza, Too popular to ignore: the influence of online reviews
on purchase intentions of search and experience products, Journal of Interactive
Marketing 27 (3) (2013) 226–235.
[25] Q. Jones, G. Ravid, S. Rafaeli, Information overload and the message dynamics of
online interaction spaces: a theoretical model and empirical exploration,
Information Systems Research 15 (2) (2004) 194–210.
X. Sun, et al. Decision Support Systems 124 (2019) 113099
[26] Y. Kang, L. Zhou, RubE: rule-based methods for extracting product features from
online consumer reviews, Information & Management 54 (2) (2017) 166–176.
[27] S. Karimi, F. Wang, Online review helpfulness: impact of reviewer profile image,
Decision Support Systems 96 (2017) 39–48.
[28] N. Korfiatis, E. García-Bariocanal, S. Sánchez-Alonso, Evaluating content quality
and helpfulness of online product reviews: the interplay of review helpfulness vs.
review content, Electronic Commerce Research and Applications 11 (3) (2012)
[29] S. Krishnamoorthy, Linguistic features for review helpfulness prediction, Expert
Systems with Applications 42 (7) (2015) 3751–3759.
[30] E.-J. Lee, S.Y. Shin, When do consumers buy online product reviews? Effects of
review quality, product type, and reviewer’s photo, Computers in Human Behavior
31 (2014) 356–366.
[31] P.-J. Lee, Y.-H. Hu, K.-T. Lu, Assessing the helpfulness of online hotel reviews: a
classification-based approach, Telematics and Informatics 35 (2) (2018) 436–445.
[32] M. Li, C.-H. Tan, K.-K. Wei, K. Wang, Sequentiality of product review information
provision: an information foraging perspective, MIS Quarterly 41 (3) (2017)
[33] S. Liang, M. Schuckert, R. Law, How to improve the stated helpfulness of hotel
reviews? A multilevel approach, International Journal of Contemporary Hospitality
Management 31 (2) (2019) 953–977.
[34] J.-S. Lim, A. Al-Aali, J.H. Heinrichs, Impact of satisfaction with e-retailers’ touch
points on purchase behavior: the moderating effect of search and experience product type, Marketing Letters 26 (2) (2014) 225–235.
[35] X.W. Liu, M. Schuckert, R. Law, Utilitarianism and knowledge growth during status
seeking: evidence from text mining of online reviews, Tourism Management 66
(2018) 38–46.
[36] Z. Liu, S. Park, What makes a useful online review? Implication for travel product
websites, Tourism Management 47 (2015) 140–151.
[37] J. Luan, Z. Yao, F. Zhao, H. Liu, Search product and experience product online
reviews: an eye-tracking study on consumers’ review search behavior, Computers in
Human Behavior 65 (2016) 420–430.
[38] C. Luo, X. Luo, Y. Xu, M. Warkentin, C.L. Sia, Examining the moderating role of
sense of membership in online review evaluations, Information & Management 52
(3) (2015) 305–316.
[39] M. Ma, R. Agarwal, Through a glass darkly: information technology design, identity
verification, and knowledge contribution in online communities, Information
Systems Research 18 (1) (2007) 42–67.
[40] J.E. Maddux, R.W. Rogers, Effects of source expertness, physical attractiveness, and
supporting arguments on persuasion – a case of brains over beauty, Journal of
Personality and Social Psychology 39 (2) (1980) 235–244.
[41] M.S.I. Malik, A. Hussain, Helpfulness of product reviews as a function of discrete
positive and negative emotions, Computers in Human Behavior 73 (2017) 290–302.
[42] M.S.I. Malik, A. Hussain, An analysis of review content and reviewer variables that
contribute to review helpfulness, Information Processing & Management 54 (1)
(2018) 88–104.
[43] S.M. Mudambi, D. Schuff, What makes a helpful online review? A study of customer
reviews on, MIS Quarterly 34 (1) (2010) 185–200.
[44] P. Nelson, Information and consumer behavior, Journal of Political Economy 78 (2)
(1970) 311–329.
[45] P. Nelson, Advertising as information, Journal of Political Economy 82 (4) (1974)
[46] T.L. Ngo-Ye, A.P. Sinha, The influence of reviewer engagement characteristics on
online review helpfulness: a text regression model, Decision Support Systems 61
(2014) 47–58.
[47] T.L. Ngo-Ye, A.P. Sinha, A. Sen, Predicting the helpfulness of online reviews using a
scripts-enriched text regression model, Expert Systems with Applications 71 (2017)
[48] P. Pendharkar, A threshold varying bisection method for cost sensitive learning in
neural networks, Expert Systems with Applications 34 (2) (2008) 1456–1464.
[49] A. Qazi, K.B. Shah Syed, R.G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, A conceptlevel approach to the analysis of online review helpfulness, Computers in Human
Behavior 58 (2016) 75–81.
[50] J. Qi, Z. Zhang, S. Jeon, Y. Zhou, Mining customer requirements from online reviews: a product improvement perspective, Information & Management 53 (8)
(2016) 951–963.
[51] P. Racherla, W. Friske, Perceived ‘usefulness’ of online consumer reviews: an exploratory investigation across three services categories, Electronic Commerce
Research and Applications 11 (6) (2012) 548–559.
[52] M. Salehan, D.J. Kim, Predicting the performance of online consumer reviews: a
sentiment mining approach to big data analytics, Decision Support Systems 81
(2016) 30–40.
[53] X.-F. Shao, Free or calculated shipping: impact of delivery cost on supply chains
moving to online retailing, International Journal of Production Economics 191
(2017) 267–277.
[54] M. Siering, J. Muntermann, B. Rajagopalan, Explaining and predicting online review helpfulness: the role of content and reviewer-related signals, Decision Support
Systems 108 (2018) 1–12.
[55] A. Singh, C.S. Tucker, A machine learning approach to product review disambiguation based on function, form and behavior classification, Decision Support
Systems 97 (2017) 81–91.
[56] A.S. Singh, C.S. Tucker, Investigating the heterogeneity of product feature preferences mined using online product data streams, ASME 2015 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2015.
[57] J.P. Singh, S. Irani, N.P. Rana, Y.K. Dwivedi, S. Saumya, P.K. Roy, Predicting the
“helpfulness” of online consumer reviews, Journal of Business Research 70 (2017)
[58] L.C. Tidwell, J.B. Walther, Computer-mediated communication effects on disclosure, impressions, and interpersonal evaluations: getting to know one another a
bit at a time, Human Communication Research 28 (3) (2002) 317–348.
[59] R. Ullah, N. Amblee, W. Kim, H. Lee, From valence to emotions: exploring the
distribution of emotions in online product reviews, Decision Support Systems 81
(2016) 41–53.
[60] R. Ullah, A. Zeb, W. Kim, The impact of emotions on the helpfulness of movie
reviews, Journal of Applied Research and Technology 13 (3) (2015) 359–363.
[61] X. Wang, L. Tang, E. Kim, More than words: do emotional content and linguistic
style matching matter on restaurant review helpfulness? International Journal of
Hospitality Management 77 (2019) 438–447.
[62] D. Weathers, S.D. Swain, V. Grover, Can online product reviews be more helpful?
Examining characteristics of information content by product type, Decision Support
Systems 79 (2015) 12–23.
[63] J. Wu, Review popularity and review helpfulness: a model for user review effectiveness, Decision Support Systems 97 (2017) 92–103.
[64] S. Xiao, C.-P. Wei, M. Dong, Crowd intelligence: analyzing online product reviews
for preference measurement, Information & Management 53 (2) (2016) 169–182.
[65] D. Yin, S.D. Bond, H. Zhang, Anxious or angry: effects of discrete emotions on the
perceived helpfulness of online reviews, MIS Quarterly 38 (2) (2014) 539–560.
[66] D. Yu, Y. Mu, Y. Jin, Rating prediction using review texts with underlying sentiments, Information Processing Letters 117 (2017) 10–18.
[67] Y. Zhang, Z. Lin, Predicting the helpfulness of online product reviews: a multilingual approach, Electronic Commerce Research and Applications 27 (2018) 1–10.
[68] X. Zheng, S. Zhu, Z. Lin, Capturing the essence of word-of-mouth for social commerce: assessing the quality of online e-commerce reviews by a semi-supervised
approach, Decision Support Systems 56 (2013) 211–222.
[69] S. Zhou, B. Guo, The order effect on online review helpfulness: a social influence
perspective, Decision Support Systems 93 (2017) 77–87.
[70] D.H. Zhu, Z.J. Zhang, Y.P. Chang, S. Liang, Good discounts earn good reviews in
return? Effects of price promotion on online restaurant reviews, International
Journal of Hospitality Management 77 (2019) 178–186.
[71] H. Zhu, C.X.J. Ou, W.J.A.M. van den Heuvel, H. Liu, Privacy calculus and its utility
for personalization services in e-commerce: an analysis of consumer decisionmaking, Information & Management 54 (4) (2017) 427–437.