Electric vehicles in the last mile of urban freight transportation: A sustainability assessment of postal deliveries in Rio de Janeiro- Brazil

Augustin Kroell & Aurélien Pinchard

Renata Albergaria de Mello Bandeiraa, George Vasconcelos Goesa, Daniel Neves Schmitz Goncalvesa, Marcio de Almeida D’Agostoa, Cintia Machado de Oliveiraa, Electric vehicles in the last mile of urban freight transportation: A sustainability assessment of postal deliveries in Rio de Janeiro- Brazil, Transportation Research Part D 67 (2019) 491–502

Introduction :

La croissance de la population urbaine et l’essor des activités de commerce électronique augmentent la complexité du dernier kilomètre des livraisons de colis et ses impacts sur l’environnement et la qualité de vie.

Cet article propose une méthode pour évaluer les stratégies mises en place sur le dernier kilomètre de livraison des colis, en prenant compte des enjeux sociaux, environnementaux et économiques. Les recherches effectuées font l’état de la migration des énergies fossiles de propulsion vers des énergies électriques dans les zones urbaines.

Les auteurs ont choisi d’évaluer les alternatives possibles avec l’utilisation des petits véhicules électriques et des vélos cargos. 

Mots clés : dernier kilomètre de livraison, énergies électriques, tricycle electric

Développement:

Dans la stratégie « Distribution by Electric Tricycles » (DET), le messager effectue les livraisons à l’aide d’un tricycle électrique sur tout le trajet. Dans ce cas, le poids limite est la capacité du tricycle (50 kg). Cette stratégie ne nécessite le soutien d’un véhicule léger et l’utilisation d’un « Mobile Depot » (MD). Le messager se déplace du Centre de distribution au premier point de distribution en utilisant uniquement le tricycle. Une fois arrivé sur la zone de livraison, il gare le tricycle et livre à pied. Afin d’évaluer cette alternative, les auteurs ont testé l’utilisation de tricycles électriques dans une zone de distribution postale située dans la ville de Rio de Janeiro pendant deux semaines.

Les recherches menées dans ce document indiquent une tendance vers des alternatives plus durables sur le dernier kilomètre des livraisons urbaines, avec un changement de source d’énergie des véhicules et la réduction de la taille des véhicules, parallèlement à l’adoption de bicyclettes, de tricycles et de VUL.

Dans cette optique, les auteurs ont proposé une procédure d’évaluation qui cherche à concilier les aspects économiques, environnementaux et sociaux dans le choix des alternatives pour les livraisons du dernier kilomètre.

Dans la stratégie DET, il a été vérifié qu’une réduction de 27,9 % du coût total de livraison par itinéraire était réalisée, en plus d’une diminution des gaz à effet de serre. Néanmoins, il est important de souligner que l’entreprise postale devrait envisager une élimination et un programme de recyclage des piles utilisées par les tricycles électriques.

Conclusion :

Les résultats indiquent que l’utilisation de tricycles électriques est une alternative plus réalisable du point de vue économique, les aspects environnementaux et sociaux, n’exigeant aucune incitation publique.

Références :

Alessandrini, A., Campagna, A., Site, P.D., Filippi, F., Persia, L., 2015. Automated vehicles and the rethinking of mobility and cities. Transp. Res. Procedia 5, 145–160.

Andaloro, L., Napoli, G., Sergi, F., Micari, S., Agnello, G., Antonucci, V., 2015. Development of a new concept electric vehicle for last mile transportations. In: EVS28 Int. Electr.

Veh. Symp. Exhib. pp. 1–7.

Anderluh, A., Hemmelmayr, V.C., Nolz, P.C., 2016. Synchronizing vans and cargo bikes in a city distribution network. Cent. Eur. J. Oper. Res Springer Berlin Heidelberg.

Arena, R., Myers, J., Kaminsky, L.A., 2016. Revisiting age-predicted maximal heart rate: can it be used as a valid measure of effort? Am. Heart J. 173, 49–56.

Bussab, W.O., e Morettin, P.A., 1987. Estatistica Basica, 4a ed. Atual Editora.

Campos, V., Ramos, R., Correia, D., 2009. Multi-criteria analysis procedure for sustainable mobility evaluation in urban areas. J. Adv. Transp. 43 (4), 371–390.

Cook, D.J., Mulrow, C.D., Haynes, R.B., 1997. Systematic reviews: synthesis of best evidence for clinical decisions. Ann. Int. Med. 126 (5), 376–380.

Table 9

Comparative assessment between DET and AID strategies to TID.

Aspect Indicator (% variation) DET AID

Economic daily cost of the deliveries −28,0% 6,1%

Environmental Tier 2 approach CO2e −98,5% −25%

End-use approach CO2e – −28%

Social <57 27,0% 0%

57≤FC < 64 −43,0% 0%

64≤FC < 77 −95,0% 0%

R.A. de Mello Bandeira et al. Transportation Research Part D 67 (2019) 491–502

501

Crainic, T., Ricciardi, N., Storchi, G., 2004. Advanced freight transportation systems for congested urban areas. Transp. Res. Part C 12 (2004), 119–137.

Dablanc, L., 2009. Freight Transport for Development Toolkit. Urban Freight.

Dampier, A., Marinov, M., 2015. A study of the feasibility and potential implementation of metro-based freight transportation in newcastle upon tyne. Urban Rail Transit 1,

164–182.

Delft, 2013. Zero emissions trucks – an overview of state-of-the-art technologies and their potential.

Dennis, W. Parcel and small package delivery industry paperback. Available online: https://www.amazon.com/Parcel-Small-Package-Delivery-Industry/dp/1461021545 (accessed

in August 04, 2017).

Diziain, D., Taniguchi, E., Dablanc, L., 2014. Urban logistics by rail and waterways in France and Japan. Procedia – Soc. Behav. Sci. 151 (2014), 257–265.

Faccio, M., Gamberi, M., 2015. New city logistics paradigm: from the “Last Mile” to the “Last 50 Miles” sustainable distribution. Sustain 7, 14873–14894.

Fernandes, V.A., D’Agosto, M.A., Oliveira, C.M., Assumpcao, F.C., Deveza, A.C.P., 2015. Eco-driving: uma ferramenta para aprimorar a sustentabilidade do transporte de residuos

urbanos. Transportes 23, 1–8.

Foltyński, M., 2014. Electric fleets in urban logistics. Procedia Soc. Behav. Sci. 151, 48–59. https://doi.org/10.1016/j.sbspro.2014.10.007.

Froelicher, V.F., Myers, J., Follansbee, W.P., Labovitz, A.J., 1998. Exercicio e o coracao, third ed. Revinter, Rio de Janeiro.

Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.M., Nieman, D.C., Swain, D.P., 2011. ACSM – quantity and quality of exercise for developing and

maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43,

1334–1359.

Global Opportunities for European SMEs – GO4SEM, 2015. Eletric vehicle supply chain – global opportunities for electric mobility: Brazil. Disponivel em: http://www.go4sem.

eu/public/global-opportunities/brazil-1.

Gruber, J., Kihm, A., 2016. Reject or embrace? Messengers and electric cargo bikes. Transp. Res. Procedia 12, 900–910.

Gruber, J., Kihm, A., Lenz, B., 2014. A new vehicle for urban freight? An ex-ante evaluation of electric cargo bikes in courier services. Res. Transp. Bus. Manage. 11, 53–62.

Heitz, A., Beziat, A., 2016. The parcel industry in the spatial organization of logistics activities in the Paris Region: inherited spatial patterns and innovations in urban logistics

systems. Transp. Res. Procedia 12, 812–824.

Hinde, S., Dixon, J., 2005. Changing The Obesogenic Environment: insights from a cultural economy of car reliance. Transp. Res. D 10, 31–53.

IPPC – Intergovernmental Panel on Climate Change, 2014. Fifth assessment report (AR5). Chapter 8, pp. 73–79. Available at: https://www.ipcc.ch/pdf/assessmentreport/ar5/

wg1/WG1AR5_Chapter08_FINAL.pdf.

IPCC – Intergovernmental Panel on Climate Change, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories

Programme. Kanagawa: Institute for Global Environmental Strategies.

Joerss, M., Schroder, J., Neuhaus, F., Klink, C., Mann, F., 2016. McKinsey & Company Parcel delivery: the future of last mile, pp. 1–32.

Lebeau, P., Macharis, C., van Mierlo, J., Maes, G., 2013. Implementing electric vehicles in urban distribution: a discrete event simulation. World Electr. Veh. J. 6, 38–47.

Lebeau, P., De Cauwer, C., Van Mierlo, J., Macharis, C., Verbeke, W., Coosemans, T., 2015. Conventional, hybrid, or electric vehicles: which technology for an urban distribution

centre? Sci. World J. 2015.

Margaritis, D., Anagnostopoulou, A., Tromaras, A., Boile, M., 2016. Electric commercial vehicles: practical perspectives and future research directions. Research in Transportation

Business & Management.

MMA, 2013. Inventario Nacional de Emissoes Atmosfericas por Veiculos Automotores Rodoviarios 2013: Ano-base 2012. Ministerio do Meio Ambiente, Brasilia, DF.

Montwi, A., 2014. The role of seaports as logistics centers in the modelling of the sustainable system for distribution of goods in urban areas. Procedia – Soc. Behav. Sci. 151,

257–265.

Navarro, C., Roca-Riu, M., Furio, S.a., Estrada, M., 2015. Designing new models for energy efficiency in urban freight transport for smart cities and its application to the Spanish

case. Transp. Res. Procedia 12, 314–324.

Ngai, E.W.T., Wat, F.K.T., 2002. A literature review and classification of electronic commerce research. Inform. Manage. 39, 415–429.

Nord, J.H., Nord, G.D., 1995. MIS Research: Journal status assessment and analysis. Inform. Manage. 29, 29–42.

NTC, 2014. Manual de Calculo de Custos e Formacao de Precos do Transporte Rodoviario de Cargas. DECOPE – Departamento de Custos Operacionais, Estudos Tecnicos e

Economicos, Sao Paulo.

Oliveira, C.M., D’Agosto, M.A., Rosa, R.A., Assuncao, F.C., 2016. Low carbon logistics, green logistics & sustainable logistics: establishing concepts and scope. Int. J. Innov. Sci.

Res. 26, 47–64.

Oliveira, L.K., Pinto e Oliveira, B.R., Correia, V.A., 2014. Simulation of an urban logistic space for the distribution of goods in Belo Horizonte, Brazil. Procedia – Soc. Behav. Sci.

125, 496–505.

ONU, 2013. ONU: mais de 70 da populacao mundial vivera em cidades ate 2050. Disponivel em: http://www.onu.org.br/onu-mais-de-70-da-populacao-mundial-vivera-emcidades-

ate-2050/ (acesso em 08 de Outubro de 2015).

Peres, L.A.P., Ferreira, A.P.F., Krempser, A.R. e Ferreira, T.S., 2012. Beneficios Energeticos e Ambientais da Utilizacao de Triciclos Eletricos em Centros Urbanos no Brasil Cleiton

Magalhaes. XIV CBE Congresso Brasileiro de Energia Rio de Janeiro. Disponivel em: http://www.gruve.eng.uerj.br/download/

BeneficiosdaUtilizacaodeTriciclosEletricosFINAL (Acesso em 28 de Janeiro de 2016).

Rezvani, Z., Jansson, J., Bodin, J., 2015. Advances in consumer electric vehicle adoption research: a review and research agenda. Transport. Res. Part D: Transport Environ. 34,

122–136.

Richardson, B.C., 2005. Sustainable transport: analysis frameworks. J. Transp. Geogr. 13 (1), 29–39.

Rizet, C., Cruzb, C., Vromantc, M., 2015. The constraints of vehicle range and congestion for the use of electric vehicles for urban freight in France. Transp. Res. Procedia 12,

500–507.

Rothengatter, W., Hensher, D.A., Button, K.J., 2003. Environmental concepts – physical and economic. Handbook of transportation and the environment, first ed. Elsevier Ltd.,

Amsterdam: Netherlands, pp. 827.

Roumboutsos, A., Kapros, S., Vanelslander, T., 2014. Green city logistics: systems of innovation to assess the potential of E-vehicles. Res. Transp. Bus. Manage. 11, 43–52.

SarmaSadhu, S.L.N., Tiwari, G., Jain, H., 2014. Impact of cycle rickshaw trolley (CRT) as non-motorised freight transport in Delhi. Transp. Policy 35, 64–70.

Schau, V., Rossak, W., Hempel, H., Spathe, S., 2015. Smart City Logistik Erfurt (SCL): ICT-support for managing fully electric vehicles in the domain of inner city freight traffic: a

Look at an ongoing federal project in the City of Erfurt, Germany. IEOM 2015 – 5th Int. Conf. Ind. Eng. Oper. Manag. Proceeding.

Schier, M., Offermann, B., Weigl, J.D., Maag, T., Mayer, B., Rudolph, C., Gruber, J., 2016. Innovative two wheeler technologies for future mobility concepts. In: 2016 11th Int.

Conf. Ecol. Veh. Renew. Energies, EVER 2016.

Schliwa, G., Armitage, R., Aziz, S., Evans, J., Rhoades, J., 2015. Sustainable city logistics — making cargo cycles viable for urban freight transport. Res. Transp. Bus. Manage. 15,

50–57.

Schoemaker, J., Allen, J., Huschebeck M. e Monigl, J., 2006. Quantification of urban freight transport effects I. Best urban freight solutions II.

Taniguchi, E., Imanishi, Y., Barber, R., Jamesd, J., Debauchee, W., 2014. Public sector governance to implement freight vehicle transport management. Procedia – Soc. Behav. Sci.

125, 345–357.

Thome, A.M., Scavarda, L.F., Scavarda, A.J., 2016. Conducting systematic literature review in operations management. Prod. Plan. Cont. https://doi.org/10.1080/09537287.

2015.1129464.

Thompson, R.G., Hassall, K., 2014. Implementing high productivity freight vehicles in urban areas. Procedia – Soc. Behav. Sci. 151, 318–332.

Tozzi, M., Corazza, M.V., Musso, A., 2013. Recurring patterns of commercial vehicles movements in urban areas: the Parma case study. Procedia – Soc. Behav. Sci. 87, 306–320.

Tranfield, D., Denyer, D., Smart, P., 2003. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manage. 14,

207–222.

UNFCCC – United Nations Framework Convention on Climate Change, 2015. Mobilise your city local governments in developing countries take high road to low-carbon. http://

newsroom.unfccc.int/lpaa/transport/mobiliseyourcity-taking-the-high-road-to-low-carbon/ (acesso em 07.06.2016).

Visser, J., Nemoto, J., Browne, M., 2014. Home delivery and the impacts on urban freight transport: a review. Procedia – Soc. Behav. Sci. 125, 15–27.

Weiss, M., Dekker, P., Moro, A., Scholz, H., Patel, M.K., 2015. On the electrification of road transportation – a review of the environmental, economic, and social performance of

electric two-wheelers. Transport. Res. Part D: Transport Environ. 41, 348–366.