Référence :
Sutanto, J., et al. (2013). Addressing the personalization-privacy paradox: an empirical assessment from a field experiment on smartphone users. MIS Quarterly, 37, 1141-1164
Idée / dominante :
Le paradoxe entre personnalisation du web et confidentialité des informations est latent. En se focalisant sur les applications mobiles, les chercheurs ont démontré qu’une application proposant des offres personnalisées mais respectant la confidentialité des informations de l’utilisateur (par le moyen d’un stockage local, sans serveur central) est plus rassurante et plus utilisée.
Résumé :
Les chercheurs souhaitent évaluer l’appréciation de la personnalisation des applications mobiles par les utilisateurs de smartphones selon deux paramètres : le « process » (la façon dont les informations sont recueillies et traitées) et la satisfaction procurée par la personnalisation (qualité/singularité des offres…). Il s’agit en fait de la confrontation de deux théories, finalement complémentaires. L’ensemble de l’étude est basée sur la réception de coupons de réductions par le moyen d’une application mobile.
UGT (Uses & Gratification Theory) : Un utilisateur est plus enclin à conserver une offre si celle-ci est personnalisée goûts/habitudes…). La mesure (selon ses de cette nombre de « gratification » est faite par sauvegarde de coupons proposés.
IBT (Information Boundary Theory) : Chaque individu se crée un espace informationnel (physique ou virtuel) autour de lui, dont les frontières délimitent leur propension à dévoiler /diffuser des informations le concernant. Toute tentative, par un tiers extérieur, de franchir cette frontière est sentie comme une intrusion (mal perçue).
Pour mener à bien cette enquête, les chercheurs ont testé et mesuré le téléchargement et l’utilisation de trois applications de « m-couponing » : la première présente des offres non-ciblées et ne nécessite donc pas d’intégrer des informations personnelles, la seconde présente des offres ciblées, au moyen de la collecte d’informations qui sont traitées et stockées via un serveur externe, et la troisième cible ses offres par un traitement et un stockage local (le smartphone), ce qui respecte la confidentialité des informations.
Il apparaît que cette dernière application participe à un meilleur confort psychologique de son utilisateur car la frontière de la violation des données personnelles (cf. IBT) n’est pas franchie. Cela contribue à la fois à une meilleure appréciation du « process » de collecte et de traitement des informations (plus grand usage de l’application), ainsi que de la qualité du ciblage des offres (davantage de sauvegardes de coupons). En effet, le traitement local des données a la qualité de rassurer les utilisateurs de l’application, car la non-transmission de ses informations à un serveur externe garantit que celles-ci ne seront pas utilisées à des fins secondaires ou non-désirées. Le risque d’interception de ces données lors de la transmission à un serveur est également écarté.
Notes d’intérêt pour la recherche en cours :
Récapitulatif des différents travaux qui ont été faits au sujet du paradoxe personnalisation/confidentialité, et leurs conclusions dans un tableau, démarche de recherche,
Ce qui n’a pas été abordé :
L’étude se concentre sur les applications de « couponing » mobile. Il serait intéressant d’élargir cela aux applications sociales, et aux sites associés. Un stockage local des informations rassurerait-il et permettrait- il de générer plus de flux ?
Par ailleurs, quel type d’information un utilisateur est-il prêt à donner : où se situe « the information boundary » ?
Références :
Abrahamson, D. (1998). The Visible Hand: Money, Markets, and Media Evolution, Journalism and Mass Communication Quarterly, 75, 14-18.
Andrade, E. B., Kaltcheva, V., and Weitz, B. (2002). Self-Disclosure on the Web: The Impact of Privacy Policy, Reward, and Company Reputation, Advances in Consumer Research, 29, 350-353.
Angst, C., and Agarwal, R. (2009). Adoption of Electronic Health Records in the Presence of Privacy Concerns: The Elaboration Likelihood Model and Individual Persuasion, MIS Quarterly, 33(2), 339-370.
Angwin, J., and Valentino-DeVries, J. (2011). Apple, Google Collect User Data, The Wall Street Journal, U.S. Edition, April 22.
Ansari, A., and Mela, C. F. (2003). E-Customization, Journal of Marketing Research, 40(2), 131-145.
Awad, N. F., and Krishnan, M. S. (2006). The Personalization Privacy Paradox: An Empirical Evaluation of Information Transparency and the Willingness to be Profiled Online for Personalization, MIS Quarterly, 30(1), 13-28.
Bargh, M. S., van Eijk, R., Ebben, P., and Salden, A. H. (2003). Agent-Based Privacy Enforcement of Mobile Services, in Proceedings of International Conference on Advances in Infrastructure for Elec- tronic Business, Education, Science and Medicine and Mobile Technologies on the Internet, L’Aquila, Italy.
Brar, A., and Kay, J. (2004). Privacy and Security in Ubiquitous Personalized Applications, Technical Report No. 561, School of Information Technologies, University of Sydney.
Brusilovsky, P., and Tasso, C. 2004. Preface to Special Issue on User Modeling for Web Information Retrieval, User Modeling and User- Adapted Interaction, 14(2-3), 147-157
Bulander, R., Decker, M., Kölmel, B., and Schiefer, G. (2005). Enabling Personalized and Context Sensitive Mobile Advertising while Guaranteeing Data Protection, in Proceedings of the EURO- mGOV 2005, Mobile Government International LLC, Brighton, UK, 445-454.
Chellappa, R. K., and Sin, R. (2005). Personalization Versus Privacy: An Empirical Examination of the Online Consumer’s Dilemma, Information Technology and Management, 6(2-3), pp. 181-202.
Clifford, S. (2009). Advertisers Get a Trove of Clues in Smartphones, The New York Times, Media & Advertising, March 11.
Culnan, M. J., and Milne, G. R. ‘2001). The Culnan-Milne Survey on Consumers and Online Privacy Notices: Summary of Responses, Interagency Public Workshop: Getting Noticed: Writing Effective Financial Privacy Notices, December 4.
Cutler, N. E., and Danowski, J. A. ‘1980). Process Gratification in Aging Cohorts, Journalism Quarterly, 57, 269-277.
DeZoysa, S. (2002). Mobile Advertising Needs to Get Personal, Telecommunications: International Edition, 36(2), p. 8.
Dhar, S., and Varshney, U. (2011). Challenges and Business Models for Mobile Location-Based Services and Advertising, Communications of the ACM, 54(5), 121-129.
Federal Trade Commission. (2010). Protecting Consumer Privacy in an Era of Rapid Change: A Proposed Framework for Businesses and Policymakers, Preliminary FTC Staff Report, December.
Fox, S. (2000). Trust and Privacy Online: Why Americans Want to Rewrite the Rules, The Pew Internet & American Life Project.
Gartner, Inc. (2009). Gartner’s Top Predictions for IT Organizations and Users, 2010 and Beyond: A New Balance, Gartner’s Research.
Gedik, B., and Liu, L. (2008). Protecting Location Privacy with Personalized K-Anonymity: Architecture and Algorithms, IEEE Transactions on Mobile Computing 7(1), 1-18.
Ha, L., and James, E. L. (1998). Interactivity Reexamined: A Baseline Analysis of Early Business Web Sites, Journal of Broadcasting & Electronic Media, 42, 457-474.
Hann, I. H., Hui, K. L., Lee, T. S. Y., and Png, I. P. L. (2002). Online Information Privacy: Measuring the Cost-Benefit Tradeoff, in Proceedings of the 23rd International Conference on Information Systems, Barcelona, Spain, December 15-18, 1-10.
Harrison, G. W., and List, J. A. (2004). Field Experiments, Journal of Economic Literature, 42(4), 1009-1055.
Haselton, T. (2012). Congress Probes Apple Over Path Address Book Debacle, Apple to Require ‘Explicit User Approval,’ TechnoBuffalo, February, 15.
Heerink, M., Kröse, B., Wielinga, B., Evers, V. (2008). Enjoyment, Intention to Use and Actual Use of a Conversational Robot by Elderly People, in Proceedings of the 3rd ACM/IEEE International Conference on Human–Robot Interaction, 113-119.
Hui, K. L., Teo, H. H., and Lee, T. S. Y. (2007). The Value of Privacy Assurance: An Exploratory Field Experiment, MIS Quarterly, 31(1), 19-33.
Hutchinson, R. (2011). 50 Percent of iPhone Apps Can Track User Data, Applie News, January 26.
Iyer, B., and Davenport, T. H. (2008). Reverse Engineering Google’s Innovation Machine, Harvard Business Review, 86(4), 56-68.
Jensen, C., Potts, C., and Jensen, C. (2005). Privacy Practices of Internet Users: Self-Report Versus Observed Behavior, International Journal of Human Computer Studies, 63(1-2), 203-227.
Kavassalis, P., Spyropoulou, N., Drossos, D., Mitrokostas, E., Gikas, G., and Hatzistamatiou, A. (2003). Mobile Permission Marketing: Framing the Market Inquiry, International Journal of Electronic Commerce, 8(1), 55-79.
Klapper, J. T. (1963). Mass Communication Research: An Old RoadResurveyed, Public Opinion Quarterly, 27, 515-527.
Lee, O. (2001). Internet Marketing Research: Theory and Practice,Hershey, PA: Idea Group Publishing.
Lee, Y. E., and Benbasat, I. (2003). Interface Design for MobileCommerce, Communications of the ACM, 46(12), 49-52.
Lin, C. (1999). Online Service Adoption Likelihood, Journal of Advertising Research, 39, 79-89.
Long, J. S., and Freese, J. (2006). Regression Models for Categorical Dependent Variables Using Stata (2nd ed.), College Station, TX:Stata Press.
McGuire, W. J. (1974). Psychological Motives and Communication Gratification, in The Uses of Mass Communications: Current Perspectives on Gratifications Research, J. Blumler and E. Kaatz (eds.), Beverly Hills, CA: Sage Publications, 167-196.
Norberg, P. A., Horne, D. R., and Horne, D. A. (2007). The Privacy Paradox: Personal Information Disclosure Intentions Versus Behaviors, Journal of Consumer Affairs, 41, 100-126.
Peppers, D., and Rogers, M. (1997). The One to One Future, New York: Doubleday.
Petronio S. (1991). Communication Boundary Management: A Theoretical Model of Managing Disclosure of Private Information between Marital Couples, Communication Theory, 1, 311-335.
Phelps, J., Nowak, G., and Ferrell, E. (2000). Privacy Concerns and Consumer Willingness to Provide Personal Information, Journal of Public Policy & Marketing, 19(1), 27-41.
Rognehaugh, R. (1999). The Health Information Technology Dictionary, Gaithersburg, MD: Aspen.
Rubin, A. M. (1985). Uses and Gratifications: Quasi-Functional Analysis, in Broadcasting Research Methods, J. Dominick and J. Fletcher (eds.), Boston: Allyn and Bacon, 202-220.
Rubin, A. M. (1993). Audience Activity and Media Use, Communication Monographs, 60(1), 98-105.
Ruggiero, T. E. (2000). Uses and Gratifications Theory in the 21st Century, Mass Communication and Society, 3(1), 3-37.
Sheng, H., Nah, F. F. H., and Siau, K. (2008). An Experimental Study on Ubiquitous Commerce Adoption: Impact of Personalization and Privacy Concerns, Journal of the Association for Information Systems, 9(6), Article 15.
Shi, X. (2006). Sharing Service Semantics Using SOAP-Based and REST Web Services, IT Professional, 8, 18-24.
Simonson, I. (2005). Determinants of Customers’ Responses to Customized Offers: Conceptual Framework and Research Proposi- tions, Journal of Marketing, 69, 32-45.
Smith, H. J., Milberg, S. J., and Burke, S. J. (1996). Information Privacy: Measuring Individuals’ Concerns About Organizational Practices, MIS Quarterly, 20(2), 167-196.
Solove, D. J. (2006). A Raxonomy of Privacy, University of Pennsylvania Law Review, 154(3), 477-560.
Song I., LaRose R., Eastin M. S., and Lin C. A. (2004). Internet Gratifications and Internet Addiction: On the Uses and Abuses of New Media, Cyberpsycholy & Behavior, 7(4), 384-94.
Stafford, M. R., and Stafford, T. F. (1996). Mechanical Commercial Avoidance: A Uses and Gratifications Perspective, Journal of Current Issues and Research in Advertising, 18, 27-38.
Stafford, T. F., and Stafford, M. R. (2000). Consumer Motivations to Engage in Electronic Commerce: Uses and Gratifications of the World Wide Web, in Electronic Commerce: Opportunities and Challenges, S. Rahman and M. Raisinghani (eds.), Hershey, PA: Idea Group Publishing.
Stafford, T. F., and Stafford, M. R. (2001). Investigating Social Motivations for Internet Use, in Internet Marketing Research: Theory and Practice, O. Lee (ed.), Hershey, PA: Idea Group Publishing, 93-107.
Stafford, T. F., Stafford, M. R., and Schkade, L. L. (2004). Determining Uses and Gratifications for the Internet, Decision Sciences, 35(2), 259-288.
Stanton, J. M. (2003). Information Technology and Privacy: A Boundary Management Perspective, in Socio-Technical and Human Cognition Elements of Information Systems, S. Clarke, E. Coakes, M. Hunter, and A. Wenn (eds.), Hershey, PA: Idea Books, 79-103.
Stanton, J. M., and Stam K. (2003). Information Technology, Privacy, and Power Within Organizations: A View from Boundary Theory and Social Exchange Perspectives, Surveillance and Society, 1(2), 152-190.
Stanton, J. M., and Weiss, E. M. (2000). Electronic Monitoring in Their Own Words: An Exploratory Study of Employees’ Experiences with New Types of Surveillance, Computers in Human Behavior, 16, 423-440.
Stewart, D. W., and Pavlou, P. A. (2002). From Consumer Response to Active Consumer: Measuring the Effectiveness of Interactive Media, Journal of the Academy of Marketing Science, 30(4), 376-396.
Swanson, D. L (1992). Understanding Audiences: Continuing Contributions of Gratifications Research, Poetics, 21(4), 305-28.
Tode, C. (2012). App Developers Face Mounting Pressures on Privacy, Mobile Marketer.
Treiblmaier, H., and Pollach, I. (2007). Users’ Perceptions of Benefits and Costs of Personalization, in Proceedings of the 28th Inter- national Conference on Information Systems, December 9-12, Montreal, Canada.
Utz, S., and Kramer, N. (2009). The Privacy Paradox on Social Network Sites Revisited: The Role of Individual Characteristics and Group Norms, Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 3(2).
Venkatesh, V., Speier, C., and Morris, M. G. (2003). User Acceptance Enablers in Individual Decision Making about Technology: Toward an Integrated Model, Decision Sciences, 33(2), 297-316.
Vizard, M. (2010). Personalization vs. Privacy in the Age of the Mobile Web, IT Business Edge
Watson, R. T., Pitt, L. L., Berthon, P., and Zinkhan, G. M. (2002). U-Commerce: Expanding the Universe of Marketing, Journal of the Academy of Marketing Science, 30(4), 333-347.
West, P. M., Ariely, D., Bellman, S, Bradlow, E., Huber, J., Johnson, E., Kahn, B., Little, J., and Schkade, D. (1999). Agents to the Rescue?, Marketing Letters, 10(3), 285-300.
Xu, H. (2007). The Effects of Self-Construal and Perceived Control on Privacy Concerns, in Proceedings of 28th International Conference on Information Systems, December 9-12, Montreal, Canada.
Xu, H., Dinev, T., Smith, H. J., and Hart, P. (2008). Examining the Formation of Individual’s Information Privacy Concerns: Toward an Integrative View, in Proceedings of 29th Annual International Conference on Information Systems, December 14-17, Paris, France, Paper 6.
Xu, H., Luo, X., Carroll, J. M., and Rosson, M. B. (2011). The Personalization Privacy Paradox: An Exploratory Study of Decision Making Process for Location-Aware Marketing, Decision Support Systems, 51, 42-52.
Xu, H., Teo, H-H., and Tan, B. C. Y. (2005). Predicting the Adoption of Location-Based Services: The Role of Trust and Perceived Privacy Risk, in Proceedings of 26th International Conference on Information Systems, December 11-14, Las Vegas, NV, 897-910.
Yi, M. U., and Hwang, Y. (2003). Predicting the Use of Web-Based Information Systems: Self-Efficacy, Enjoyment, Learning Goal Orientation, and the Technology Acceptance Model, International Journal of Human–Computer Studies, 59(4), 431-449.
Youssef, M., Atluri, V., and Adam, N. R. (2005). Preserving Mobile Customer Privacy: An Access Control System for Moving Objects and Customer Profiles, in Proceedings of 6th International Conference Mobile Data Management, 67-76.
Zakaria, N., Stam, K., and Stanton, J. M. (2003). Exploring Security and Privacy Issues in Hospital Information Systems: An Informa- tion Boundary Theory Perspective, American Medical Informatics Association Annual Symposium: Foundations of Informatics, Washington, D.C., November 8-12.
Zakaria, N., Stanton, J. M., and Sarker-Barney, S. T. M. (2003). Designing and Implementing Culturally-Sensitive IT Applications: The Interaction of Culture Values and Privacy Issues in the Middle East, Information Technology & People, 16(1), 49-75.
Zeng, L. (2011). More than Audio on the Go: Uses and Gratifications of MP3 Players, Communication Research Reports, 28(1), 97-108.