A comparative assessment of sentiment analysis and star ratings for consumer reviews

Al-Natour S, Turetken O, (2020), A comparative assessment of sentiment analysis and star ratings for consumer reviews, International Journal of Information Management, Volume 54, October 2020, 102132

https://www.sciencedirect.com/science/article/abs/pii/S0268401219311181

Mots clés : Analyse des sentiments, Bouche à oreille, Avis des consommateurs, Apprentissage automatique, Évaluation comparative

Résumé : Le bouche à oreille électronique est important et abondant dans les domaines de consommation. Les consommateurs et les fournisseurs de produits / services ont besoin d’aide pour comprendre et naviguer dans les espaces d’informations qui en résultent, qui sont vastes et dynamiques. Le ton général ou la polarité des avis, blogs ou tweets fournit une telle aide. Dans cet article, nous explorons la viabilité de l’analyse automatique des sentiments pour évaluer la polarité d’un produit ou d’un examen de service. Pour ce faire, nous examinons le potentiel des principales approches de l’analyse des sentiments, ainsi que les notes en étoiles, pour capturer le véritable sentiment d’un avis

Grandes lignes :

  • L’analyse des sentiments peut être utilisée pour déterminer le ton général d’un avis de consommateur.
  • Nous comparons la sortie de plusieurs outils d’analyse des sentiments entre eux et avec les notes en étoiles.
  • Les résultats montrent que l’analyse des sentiments peut remplacer, et surpasse souvent, les notes.
  • Facteurs contextuels, tels que le type de produit, une précision d’analyse des sentiments modérée.


Abe, 2005
S. AbeSupport vector machines for pattern classification, Vol. 2, Springer (2005)

Agarwal et al., 2011A. Agarwal, B. Xie, I. Vovsha, O. Rambow, R.J. PassonneauSentiment analysis of twitter dataProceedings of the Workshop on Language in Social Media (LSM 2011) (2011), pp. 30-38

Alaei et al., 2019A.R. Alaei, S. Becken, B. StanticSentiment analysis in tourism: Capitalizing on big dataJournal of Travel Research, 58 (2) (2019), pp. 175-191

Annett and Kondrak, 2008M. Annett, G. KondrakA Comparison of Sentiment Analysis Techniques: Polarizing Movie Blogs, Paper Presented at the Conference of the Canadian Society for Computational Studies of Intelligence (2008)

Appel et al., 2016O. Appel, F. Chiclana, J. Carter, H. FujitaA hybrid approach to the sentiment analysis problem at the sentence levelKnowledge-Based Systems, 108 (2016), pp. 110-124

Bulbul et al., 2014C. Bulbul, N. Gross, S. Shin, J. KatzWhen the path to purchase becomes the path to purposeThink with google (2014

Chang et al., 2017Y.-C. Chang, C.-H. Ku, C.-H. ChenSocial media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisorInternational Journal of Information Management (2017)

Chatterjee, 2019S. ChatterjeeExplaining customer ratings and recommendations by combining qualitative and quantitative user generated contentsDecision Support Systems, 119 (2019), pp. 14-22

Chen and Xie, 2008Y. Chen, J. XieOnline consumer review: Word-of-mouth as a new element of marketing communication mixManagement Science, 54 (3) (2008), pp. 477-491

Cheung and Lee, 2012C.M. Cheung, M.K. LeeWhat drives consumers to spread electronic word of mouth in online consumer-opinion platformsDecision Support Systems, 53 (1) (2012), pp. 218-225

Chopra et al., 2016D. Chopra, N. Joshi, I. MathurMastering natural language processing with pythonPackt Publishing Ltd. (2016)

Cicchetti, 1994D.V. CicchettiGuidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychologyPsychological Assessment, 6 (4) (1994), p. 284

Dang et al., 2009Y. Dang, Y. Zhang, H. ChenA lexicon-enhanced method for sentiment classification: An experiment on online product reviewsIEEE Intelligent Systems, 25 (4) (2009), pp. 46-53

Dang et al., 2010Y. Dang, Y. Zhang, H. ChenA lexicon-enhanced method for sentiment classification: An experiment on online product reviewsIEEE Intelligent Systems, 25 (4) (2010), pp. 46-53

De Maeyer, 2012P. De MaeyerImpact of online consumer reviews on sales and price strategies: A review and directions for future researchJournal of Product and Brand Management, 21 (2) (2012), pp. 132-139

Feldman, 2013R. FeldmanTechniques and applications for sentiment analysisCommunications of the ACM, 56 (4) (2013), pp. 82-89

Gao et al., 2015S. Gao, J. Hao, Y. FuThe Application and Comparison of Web Services for Sentiment Analysis in Tourism, Paper Presented at the 2015 12th International Conference on Service Systems and Service Management (ICSSSM) (2015)

Ghasemaghaei et al., 2018M. Ghasemaghaei, S.P. Eslami, K. Deal, K. HassaneinReviews’ length and sentiment as correlates of online reviews’ ratingsInternet Research, 28 (3) (2018), pp. 544-563

Giatsoglou et al., 2017M. Giatsoglou, M.G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, K.C. ChatzisavvasSentiment analysis leveraging emotions and word embeddingsExpert Systems with Applications, 69 (2017), pp. 214-224

Greco and Polli, 2019F. Greco, A. PolliEmotional text mining: Customer profiling in brand managementInternational Journal of Information Management (2019)

Griffin and Gonzalez, 1995D. Griffin, R. GonzalezCorrelational analysis of dyad-level data in the exchangeable casePsychological Bulletin, 118 (3) (1995), p. 430

Hasan et al., 2018A. Hasan, S. Moin, A. Karim, S. ShamshirbandMachine learning-based sentiment analysis for twitter accountsMathematical and Computational Applications, 23 (1) (2018), p. 11

Hu and Chen, 2016Y.-H. Hu, K. ChenPredicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratingsInternational Journal of Information Management, 36 (6) (2016), pp. 929-944

Hutto and Gilbert, 2014C.J. Hutto, E. GilbertVader: A Parsimonious Rule-Based Model for Sentiment Analysis of Social media Text, Paper Presented at the Eighth International AAAI Conference on Weblogs and Social media (2014)

Jeong et al., 2017B. Jeong, J. Yoon, J.-M. LeeSocial media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysisInternational Journal of Information Management, 48 (2017), pp. 280-290

Kirilenko et al., 2018A.P. Kirilenko, S.O. Stepchenkova, H. Kim, X. LiAutomated sentiment analysis in tourism: Comparison of approachesJournal of Travel Research, 57 (8) (2018), pp. 1012-1025

Koo and Li, 2016T.K. Koo, M.Y. LiA guideline of selecting and reporting intraclass correlation coefficients for reliability researchJournal of Chiropractic Medicine, 15 (2) (2016), pp. 155-163

Kordzadeh, 2019N. KordzadehInvestigating bias in the online physician reviews published on healthcare organizations’ websitesDecision Support Systems, 118 (2019), pp. 70-82

Lak and Turetken, 2014P. Lak, O. TuretkenStar ratings versus sentiment analysis–a comparison of explicit and implicit measures of opinions2014 47th Hawaii International Conference on System Sciences, IEEE (2014), pp. 796-805

Lerner and Tiedens, 2006J.S. Lerner, L.Z. TiedensPortrait of the angry decision maker: How appraisal tendencies shape anger’s influence on cognitionJournal of Behavioral Decision Making, 19 (2) (2006), pp. 115-137

Liu, 2010B. LiuSentiment analysis and subjectivityHandbook of Natural Language Processing, 2 (2010) (2010), pp. 627-666

Liu, 2012B. LiuSentiment analysis and opinion miningSynthesis Lectures on Human Language Technologies, 5 (1) (2012), pp. 1-167

Maqsood et al., 2020H. Maqsood, I. Mehmood, M. Maqsood, M. Yasir, S. Afzal, F. Aadil, M. Selim, K. MuhammadA local and global event sentiment based efficient stock exchange forecasting using deep learningInternational Journal of Information Management, 50 (2020), pp. 432-451

Mills and Law, 2004J.E. Mills, R. LawHandbook of consumer behavior, tourism, and the internetPsychology Press (2004)

Moraes et al., 2013R. Moraes, J.F. Valiati, W.P.G. NetoDocument-level sentiment classification: An empirical comparison between SVM and ANNExpert Systems with Applications, 40 (2) (2013), pp. 621-633

Mudambi and Schuff, 2010S.M. Mudambi, D. SchuffWhat makes a helpful review? A study of customer reviews on Amazon. comMIS Quarterly, 34 (1) (2010), pp. 185-200CrossRef

Nasukawa and Yi, 2003T. Nasukawa, J. YiSentiment Analysis: Capturing Favorability Using Natural Language Processing, Paper Presented at the Proceedings of the 2nd International Conference on Knowledge Capture (2003)

Nelson, 1970P. NelsonInformation and consumer behaviorThe Journal of Political Economy, 78 (2) (1970), pp. 311-329

Nielsen, 2015M.A. NielsenNeural networks and deep learning, Vol. 2018, Determination press, San Francisco, CA, USA (2015)Pang and Lee, 2005B. Pang, L. LeeSeeing stars: Exploiting class relationships for sentiment categorization with respect to rating scalesProceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics (2005), pp. 115-124

Pavlou and Dimoka, 2006P.A. Pavlou, A. DimokaThe nature and role of feedback text comments in online marketplaces: Implications for trust building, price premiums, and seller differentiationInformation Systems Research, 17 (4) (2006), pp. 392-414

Payne et al., 1993J.W. Payne, J.R. Bettman, E.J. JohnsonThe adaptive decision makerCambridge University Press (1993)

Philander and Zhong, 2016K. Philander, Y. ZhongTwitter sentiment analysis: Capturing sentiment from integrated resort tweetsInternational Journal of Hospitality Management, 55 (2016) (2016), pp. 16-24

Pirolli, 2007P. PirolliInformation foraging theory: Adaptive interaction with informationOxford University Press (2007)Google Sch

olarPozzi et al., 2016F.A. Pozzi, E. Fersini, E. Messina, B. LiuSentiment analysis in social networksMorgan Kaufmann (2016)

Prabowo and Thelwall, 2009R. Prabowo, M. ThelwallSentiment analysis: A combined approachJournal of Informetrics, 3 (2) (2009), pp. 143-157

Pradhan et al., 2016V.M. Pradhan, J. Vala, P. BalaniA survey on Sentiment Analysis Algorithms for opinion miningInternational Journal of Computer Applications, 133 (9) (2016), pp. 7-11

Qiu et al., 2012L. Qiu, J. Pang, K.H. LimEffects of conflicting aggregated rating on eWOM review credibility and diagnosticity: The moderating role of review valenceDecision Support Systems, 54 (1) (2012), pp. 631-643

Ragini et al., 2018J.R. Ragini, P.R. Anand, V. BhaskarBig data analytics for disaster response and recovery through sentiment analysisInternational Journal of Information Management, 42 (2018), pp. 13-24

Rathore and Ilavarasan, 2020A.K. Rathore, P.V. IlavarasanPre-and post-launch emotions in new product development: Insights from twitter analytics of three productsInternational Journal of Information Management, 50 (2020), pp. 111-127

Ribeiro et al., 2016F.N. Ribeiro, M. Araújo, P. Gonçalves, M.A. Gonçalves, F. BenevenutoSentibench-a benchmark comparison of state-of-the-practice sentiment analysis methodsEPJ Data Science, 5 (1) (2016), p. 23

Roussinov and Turetken, 2009D. Roussinov, O. TuretkenExploring models for semantic category verificationInformation Systems, 34 (8) (2009), pp. 753-765

Saif et al., 2016H. Saif, Y. He, M. Fernandez, H. AlaniContextual semantics for sentiment analysis of TwitterInformation Processing & Management, 52 (1) (2016), pp. 5-19

Schuckert et al., 2015M. Schuckert, X. Liu, R. LawHospitality and tourism online reviews: Recent trends and future directionsJournal of Travel & Tourism Marketing, 32 (5) (2015), pp. 608-62

Schumaker et al., 2012R.P. Schumaker, Y. Zhang, C.-N. Huang, H. ChenEvaluating sentiment in financial news articlesDecision Support Systems, 53 (3) (2012), pp. 458-464

Taboada et al., 2011M. Taboada, J. Brooke, M. Tofiloski, K. Voll, M. StedeLexicon-based methods for sentiment analysisComputational Linguistics, 37 (2) (2011), pp. 267-307

Thavasimani and Missier, 2016P. Thavasimani, P. MissierFacilitating Reproducible Research by Investigating Computational Metadata, Paper Presented at the 2016 IEEE International Conference on Big Data (Big Data) (2016)

Valdivia et al., 2017A. Valdivia, M.V. Luzón, F. HerreraSentiment analysis in tripadvisorIEEE Intelligent Systems, 32 (4) (2017), pp. 72-77

Vijayarani and Janani, 2016S. Vijayarani, R. JananiText mining: Open source tokenization tools-an analysisAdvanced Computational Intelligence: An International Journal (ACII), 3 (1) (2016), pp. 37-47

Wang et al., 2015Y. Wang, J. Yuan, J. LuoAmerica Tweets China: A Fine-Grained Analysis of the State and Individual Characteristics Regarding Attitudes Towards China, Paper Presented at the 2015 IEEE International Conference on Big Data (Big Data). (2015)

Wilson et al., 2005T. Wilson, J. Wiebe, P. HoffmannRecognizing contextual polarity in phrase-level sentiment analysisProceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (2005), pp. 347-354

Wu et al., 2019P. Wu, X. Li, S. Shen, D. HeSocial media opinion summarization using emotion cognition and convolutional neural networksInternational Journal of Information Management (2019)

Ye et al., 2009Q. Ye, Z. Zhang, R. LawSentiment classification of online reviews to travel destinations by supervised machine learning approachesExpert Systems with Applications, 36 (3) (2009), pp. 6527-6535

Zhang et al., 2011Z. Zhang, Q. Ye, Z. Zhang, Y. LiSentiment classification of Internet restaurant reviews written in CantoneseExpert Systems with Applications, 38 (6) (2011), pp. 7674-7682

Zhao et al., 2012J. Zhao, L. Dong, J. Wu, K. XuMoodlens: An Emoticon-Based Sentiment Analysis System for Chinese Tweets, Paper Presented at the Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2012)

Zhu and Zhang, 2010F. Zhu, X. ZhangImpact of online consumer reviews on sales: The moderating role of product and consumer characteristicsJournal of Marketing, 74 (2) (2010), pp. 133-148

Which online reviews do consumers find most helpful? A multi-method investigation, Decision Support Systems

Eslami S, Ghasemaghaei M, Hassanein K, (2018), Which online reviews do consumers find most helpful? A multi-method investigation, Decision Support Systems, Volume 113, September 2018, Pages 32-42

https://www.sciencedirect.com/science/article/pii/S016792361830109X

Mots clés : Avis des consommateurs en ligne, Réseau neuronal artificiel, Analyse des sentiments, Durée de l’examen, Note d’évaluation

Résumé : Bien qu’il existe des preuves que la longueur de l’examen, le score de l’examen et le cadre d’argumentation peuvent avoir une incidence sur les perceptions des consommateurs concernant l’utilité des évaluations des consommateurs en ligne, les études n’ont pas encore identifié les niveaux les plus appropriés de ces facteurs en termes de maximisation de l’utilité perçue de ces évaluations. En nous appuyant sur les théories du biais de négativité et de la sommation des indices, nous proposons un modèle théorique qui explique l’utilité des revues en ligne en fonction des caractéristiques spécifiques de ces revues (c.-à-d. La longueur, le score, la trame d’argument). Le modèle est validé empiriquement à l’aide de deux ensembles de données d’avis de consommateurs en ligne liés aux produits et services d’Amazon.com et Insureye.com respectivement. De plus, nous utilisons un réseau neuronal artificiel comme approche pour prédire l’utilité d’un examen donné en fonction de ses caractéristiques. Les résultats révèlent que les avis de consommateurs en ligne les plus utiles sont ceux qui sont associés à une longueur moyenne, à des notes d’avis plus faibles et à un cadre d’arguments négatif ou neutre. Les résultats révèlent également qu’il n’y a pas de différence majeure entre les caractéristiques des avis de consommateurs en ligne les plus utiles concernant les produits ou services. Enfin, les résultats révèlent que le facteur le plus utile pour prédire l’utilité d’un avis de consommateur en ligne est la longueur de l’avis. Les contributions théoriques et pratiques sont décrites.

Grandes lignes :

  • Plusieurs méthodes ont été utilisées, notamment l’analyse des sentiments.
  • Les avis utiles ont une longueur moyenne, des scores inférieurs et un cadre d’arguments négatif.
  • Il n’y a aucune différence entre les avis les plus utiles sur les produits ou services.
  • Le facteur le plus utile pour prédire l’utilité d’un avis de consommateur est la longueur.

  • [1] M. Salehan, D.J. Kim, Predicting the performance of online consumer reviews: a
  • sentiment mining approach to big data analytics, Decision Support Systems 81
  • (2016) 30–40.
  • [2] N. Amblee, T. Bui, Freeware downloads: an empirical investigation into the impact
  • of expert and user reviews on demand for digital goods, AMCIS 2007 Proceedings,
  • 2007, p. 21.
  • [3] J.A. Chevalier, D. Mayzlin, The effect of word of mouth on sales: online book reviews, Journal of Marketing Research 43 (3) (2006) 345–354.
  • [4] R. Kohli, S. Devaraj, M.A. Mahmood, Understanding determinants of online consumer satisfaction: a decision process perspective, Journal of Management
  • Information Systems 21 (1) (2004) 115–136.
  • [5] F. Zhu, X. Zhang, Impact of online consumer reviews on sales: the moderating role
  • of product and consumer characteristics, Journal of Marketing 74 (2) (2010)
  • 133–148.
  • [6] D.D. Chaudhari, R.A. Deshmukh, A.B. Bagwan, P.K. Deshmukh, Feature based approach for review mining using appraisal words, Emerging Trends in
  • Communication, Control, Signal Processing & Computing Applications (C2SPCA),
  • 2013 International Conference On, IEEE, 2013, pp. 1–5.
  • [7] J.P. Singh, S. Irani, N.P. Rana, Y.K. Dwivedi, S. Saumya, P.K. Roy, Predicting the
  • ‘Helpfulness’ of online consumer reviews, Journal of Business Research 70 (2017)
  • 346–355.
  • [8] K. Shrestha, 50 Important Online Reviews Stats You Need to Know [Infographic],
  • 2016 Vendasta Blog, 2016 August 29 https://www.vendasta.com/blog/50-statsyou-need-to-know-about-online-reviews , Accessed date: 24 February 2018.
  • [9] M. Ghasemaghaei, S.P. Eslami, K. Deal, K. Hassanein, Consumers’ Attitude toward
  • Insurance Companies: A Sentiment Analysis of Online Consumer Reviews, (2016).
  • [10] S.S. Srinivasan, R. Anderson, K. Ponnavolu, Customer loyalty in e-commerce: an
  • exploration of its antecedents and consequences, Journal of Retailing 78 (1) (2002)
  • 41–50.
  • [11] BrightLocal, BrightLocal, https://www.brightlocal.com/learn/local-consumerreview-survey-2016/, (2016) , Accessed date: 1 January 2018.
  • [12] C. Pongpatipat, Y. Liu-Thompkins, Beyond information: how consumers use online
  • reviews to manage social impressions, Let’s Get Engaged! Crossing the Threshold of
  • Marketing’s Engagement Era, Springer, 2016, pp. 103–104.
  • [13] A. Minnema, T.H. Bijmolt, S. Gensler, T. Wiesel, To keep or not to keep: effects of
  • online customer reviews on product returns, Journal of Retailing 92 (3) (2016)
  • 253–267.
  • [14] Q. Cao, W. Duan, Q. Gan, Exploring determinants of voting for the ‘Helpfulness’ of
  • online user reviews: a text mining approach, Decision Support Systems 50 (2)
  • (2011) 511–521.
  • [15] X. Liu, M. He, F. Gao, P. Xie, An empirical study of online shopping customer satisfaction in China: a holistic perspective, International Journal of Retail &
  • Distribution Management 36 (11) (2008) 919–940.
  • [16] D. Yin, S. Bond, H. Zhang, Anxious or Angry? Effects of Discrete Emotions on the
  • Perceived Helpfulness of Online Reviews, (2013).
  • [17] R. Filieri, What makes online reviews helpful? A diagnosticity-adoption framework
  • to explain informational and normative influences in e-WOM, Journal of Business
  • Research 68 (6) (2015) 1261–1270.
  • [18] L. Qiu, J. Pang, K.H. Lim, Effects of conflicting aggregated rating on EWOM review
  • credibility and diagnosticity: the moderating role of review valence, Decision
  • Support Systems 54 (1) (2012) 631–643.
  • [19] A. Ghose, P.G. Ipeirotis, Estimating the helpfulness and economic impact of product
  • reviews: mining text and reviewer characteristics, IEEE Transactions on Knowledge
  • and Data Engineering 23 (10) (2011) 1498–1512.
  • [20] N. Korfiatis, E. García-Bariocanal, S. Sánchez-Alonso, Evaluating content quality
  • and helpfulness of online product reviews: the interplay of review helpfulness vs.
  • review content, Electronic Commerce Research and Applications 11 (3) (2012)
  • 205–217.
  • [21] N. Hu, N.S. Koh, S.K. Reddy, Ratings lead you to the product, reviews help you
  • clinch it? The mediating role of online review sentiments on product sales, Decision
  • Support Systems 57 (2014) 42–53.
  • [22] S.M. Mudambi, D. Schuff, What Makes a Helpful Review? A Study of Customer
  • Reviews on Amazon.com. (2010).
  • [23] A. Qazi, K.B.S. Syed, R.G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, A concept-level
  • approach to the analysis of online review helpfulness, Computers in Human
  • Behavior 58 (2016) 75–81.
  • [24] K.Z. Zhang, S.J. Zhao, C.M. Cheung, M.K. Lee, Examining the influence of online
  • reviews on consumers’ decision-making: a heuristic–systematic model, Decision
  • Support Systems 67 (2014) 78–89.
  • [25] M. Kim, J.-H. Kim, S.J. Lennon, Online service attributes available on apparel retail
  • web sites: an ES-QUAL approach, Managing Service Quality: An International
  • Journal 16 (1) (2006) 51–77.
  • [26] S.-M. Kim, E. Hovy, Automatic identification of pro and con reasons in online
  • reviews, Proceedings of the COLING/ACL on Main Conference Poster Sessions,
  • Association for Computational Linguistics, 2006, pp. 483–490.
  • [27] R.M. Schindler, B. Bickart, Perceived helpfulness of online consumer reviews: the
  • role of message content and style, Journal of Consumer Behaviour 11 (3) (2012)
  • 234–243.
  • [28] J.A. Krosnick, D.S. Boninger, Y.C. Chuang, M.K. Berent, C.G. Carnot, Attitude
  • strength: one construct or many related constructs? Journal of Personality and
  • Social Psychology 65 (6) (1993) 1132.
  • [29] D. Yin, S. Mitra, H. Zhang, Research note—when do consumers value positive vs.
  • negative reviews? An empirical investigation of confirmation bias in online word of
  • mouth, Information Systems Research 27 (1) (2016) 131–144.
  • [30] R.B. Harris, D. Paradice, An investigation of the computer-mediated communication
  • of emotions, Journal of Applied Sciences Research 3 (12) (2007) 2081–2090.
  • [31] B. Heerschop, F. Goossen, A. Hogenboom, F. Frasincar, U. Kaymak, F. de Jong,
  • Polarity analysis of texts using discourse structure, Proceedings of the 20th ACM
  • International Conference on Information and Knowledge Management, ACM, 2011,
  • pp. 1061–1070.
  • [32] A. Hogenboom, D. Bal, F. Frasincar, M. Bal, F. de Jong, U. Kaymak, Exploiting
  • emoticons in sentiment analysis, Proceedings of the 28th Annual ACM Symposium
  • on Applied Computing, ACM, 2013, pp. 703–710.
  • [33] A. Hogenboom, B. Heerschop, F. Frasincar, U. Kaymak, F. de Jong, Multi-lingual
  • support for lexicon-based sentiment analysis guided by semantics, Decision Support
  • Systems 62 (2014) 43–53.
  • [34] F. Jiang, Y.-Q. Liu, H.-B. Luan, J.-S. Sun, X. Zhu, M. Zhang, S.-P. Ma, Microblog
  • sentiment analysis with emoticon space model, Journal of Computer Science and
  • Technology 30 (5) (2015) 1120–1129.
  • [35] W.C. Mann, S.A. Thompson, Rhetorical structure theory: toward a functional theory
  • of text organization, Text-Interdisciplinary Journal for the Study of Discourse 8 (3)
  • (1988) 243–281.
  • [36] W. Severin, Another look at cue summation, AV Communication Review 15 (3)
  • (1967) 233–245.
  • [37] Z. Jiang, I. Benbasat, The effects of presentation formats and task complexity on
  • online consumers’ product understanding, MIS Quarterly (2007) 475–500.
  • [38] F.M. Dwyer, Strategies for Improving Visual Learning: Instructor’s Manual, Learning
  • Services, 1978.
  • [39] N.E. Miller, Graphic communication and the crisis in education, Audio Visual
  • Communication Review (1957) 1–120.
  • [40] J.-K. Hsieh, Y.-C. Hsieh, Y.-C. Tang, Exploring the disseminating behaviors of
  • EWOM marketing: persuasion in online video, Electronic Commerce Research 12
  • (2) (2012) 201–224.
  • [41] G. Wang, X. Liu, W. Fan, A Knowledge Adoption Model Based Framework for
  • Finding Helpful User-generated Contents in Online Communities, (2011).
  • [42] L.M. Willemsen, P.C. Neijens, F. Bronner, J.A. De Ridder, ‘Highly Recommended!’
  • The content characteristics and perceived usefulness of online consumer reviews,
  • Journal of Computer-Mediated Communication 17 (1) (2011) 19–38.
  • [43] D.E. Kanouse, L.R. Hanson Jr., Negativity in evaluations, Preparation of This Paper
  • Grew out of a Workshop on Attribution Theory Held at University of California, Los
  • Angeles, Aug 1969, Lawrence Erlbaum Associates, Inc., 1987.
  • [44] P. Rozin, E.B. Royzman, Negativity bias, negativity dominance, and contagion,
  • Personality and Social Psychology Review 5 (4) (2001) 296–320.
  • [45] S. Sen, D. Lerman, Why are you telling me this? An examination into negative
  • consumer reviews on the web, Journal of Interactive Marketing 21 (4) (2007)
  • 76–94.
  • [46] P.M. Herr, F.R. Kardes, J. Kim, Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnosticity perspective, Journal of
  • Consumer Research 17 (4) (1991) 454–462.
  • [47] M. Lee, S. Youn, Electronic word of mouth (EWOM) how EWOM platforms influence consumer product judgement, International Journal of Advertising 28 (3)
  • (2009) 473–499.
  • [48] Z. Zhang, Q. Ye, R. Law, Y. Li, The impact of e-word-of-mouth on the online popularity of restaurants: a comparison of consumer reviews and editor reviews,
  • International Journal of Hospitality Management 29 (4) (2010) 694–700.
  • [49] M.S. Eastin, Credibility assessments of online health information: the effects of
  • source expertise and knowledge of content, Journal of Computer-Mediated
  • Communication 6 (4) (2001) (0–0).
  • [50] C. Park, T.M. Lee, Antecedents of online reviews’ usage and purchase influence: an
  • empirical comparison of US and Korean consumers, Journal of Interactive
  • Marketing 23 (4) (2009) 332–340.
  • [51] M.-A. Reinhard, S.L. Sporer, Content versus source cue information as a basis for
  • credibility judgments, Social Psychology 41 (2010) 93–104.
  • [52] C. Park, T.M. Lee, Information direction, website reputation and EWOM effect: a
  • moderating role of product type, Journal of Business Research 62 (1) (2009) 61–67.
  • [53] P. Racherla, W. Friske, Perceived ‘Usefulness’ of online consumer reviews: an exploratory investigation across three services categories, Electronic Commerce
  • Research and Applications 11 (6) (2012) 548–559.
  • [54] X. Bai, Predicting consumer sentiments from online text, Decision Support Systems
  • 50 (4) (2011) 732–742.
  • [55] S. Brody, N. Elhadad, An unsupervised aspect-sentiment model for online reviews,
  • Human Language Technologies: The 2010 Annual Conference of the North
  • American Chapter of the Association for Computational Linguistics, Association for
  • Computational Linguistics, 2010, pp. 804–812.
  • [56] Y. Jo, A.H. Oh, Aspect and sentiment unification model for online review analysis,
  • Proceedings of the Fourth ACM International Conference on Web Search and Data
  • Mining, ACM, 2011, pp. 815–824.
  • [57] N. Li, D.D. Wu, Using text mining and sentiment analysis for online forums hotspot
  • detection and forecast, Decision Support Systems 48 (2) (2010) 354–368.
  • S.P. Eslami et al. Decision Support Systems 113 (2018) 32–42
  • 41
  • [58] I. Maks, P. Vossen, A lexicon model for deep sentiment analysis and opinion mining
  • applications, Decision Support Systems 53 (4) (2012) 680–688.
  • [59] Q. Ye, R. Law, B. Gu, The impact of online user reviews on hotel room sales,
  • International Journal of Hospitality Management 28 (1) (2009) 180–182.
  • [60] J.B. Walther, K.P. D’Addario, The impacts of emoticons on message interpretation in
  • computer-mediated communication, Social Science Computer Review 19 (3) (2001)
  • 324–347.
  • [61] N. Hu, I. Bose, N.S. Koh, L. Liu, Manipulation of online reviews: an analysis of
  • ratings, readability, and sentiments, Decision Support Systems 52 (3) (2012)
  • 674–684.
  • [62] T.A. Ito, J.T. Larsen, N.K. Smith, J.T. Cacioppo, Negative information weighs more
  • heavily on the brain: the negativity bias in evaluative categorizations, Journal of
  • Personality and Social Psychology 75 (4) (1998) 887.
  • [63] R.F. Baumeister, E. Bratslavsky, C. Finkenauer, K.D. Vohs, Bad is stronger than
  • good, Review of General Psychology 5 (4) (2001) 323.
  • [64] B. Rimé, Emotion elicits the social sharing of emotion: theory and empirical review,
  • Emotion Review 1 (1) (2009) 60–85.
  • [65] B. Rimé, C. Finkenauer, O. Luminet, E. Zech, P. Philippot, Social sharing of emotion:
  • new evidence and new questions, European Review of Social Psychology 9 (1)
  • (1998) 145–189.
  • [66] C.E. Osgood, P.H. Tannenbaum, The principle of congruity in the prediction of
  • attitude change, Psychological Review 62 (1) (1955) 42.
  • [67] T.M. Newcomb, Interpersonal balance, Theories of Cognitive Consistency: A
  • Sourcebook, 1968, pp. 28–51.
  • [68] M. Ghasemaghaei, S.P. Eslami, K. Deal, K. Hassanein, Reviews’ length and sentiment
  • as correlates of online reviews’ ratings, Internet Research 28 (3) (2018) 544–563.
  • [69] R. He, J. McAuley, VBPR: Visual Bayesian Personalized Ranking From Implicit
  • Feedback, AAAI, 2016, pp. 144–150.
  • [70] J. McAuley, R. Pandey, J. Leskovec, Inferring networks of substitutable and complementary products, Proceedings of the 21th ACM SIGKDD International
  • Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 785–794.
  • [71] Y. Yu, W. Duan, Q. Cao, The impact of social and conventional media on firm equity
  • value: a sentiment analysis approach, Decision Support Systems 55 (4) (2013)
  • 919–926.
  • [72] J. Berger, A.T. Sorensen, S.J. Rasmussen, Positive effects of negative publicity:
  • when negative reviews increase sales, Marketing Science 29 (5) (2010) 815–827.
  • [73] W. Duan, B. Gu, A.B. Whinston, Do online reviews matter?—an empirical investigation of panel data, Decision Support Systems 45 (4) (2008) 1007–1016.
  • [74] S.R. Das, M.Y. Chen, Yahoo! for Amazon: sentiment extraction from small talk on
  • the web, Management Science 53 (9) (2007) 1375–1388.
  • [75] A. Collomb, C. Costea, D. Joyeux, O. Hasan, L. Brunie, A study and comparison of
  • sentiment analysis methods for reputation evaluation, Rapport de Recherche RRLIRIS-2014-002, 2014.
  • [76] B. Liu, Sentiment analysis and subjectivity, Handbook of Natural Language
  • Processing, 2 2010, pp. 627–666.
  • [77] E. Cambria, B. Schuller, Y. Xia, C. Havasi, New avenues in opinion mining and
  • sentiment analysis, IEEE Intelligent Systems 28 (2) (2013) 15–21.
  • [78] B. Pang, L. Lee, Opinion mining and sentiment analysis, Foundations and Trends® in
  • Information Retrieval 2 (1–2) (2008) 1–135.
  • [79] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, M. Stede, Lexicon-based methods for
  • sentiment analysis, Computational Linguistics 37 (2) (2011) 267–307.
  • [80] M. Taboada, K. Voll, J. Brooke, Extracting sentiment as a function of discourse
  • structure and topicality, Simon Fraser Univeristy School of Computing Science
  • Technical Report, 2008.
  • [81] B. Pang, L. Lee, A sentimental education: sentiment analysis using subjectivity
  • summarization based on minimum cuts, Proceedings of the 42nd Annual Meeting
  • on Association for Computational Linguistics, Association for Computational
  • Linguistics, 2004, p. 271.
  • [82] A. Go, R. Bhayani, L. Huang, Twitter sentiment classification using distant supervision, CS224N Project Report, Stanford (1:12), 2009.
  • [83] C.H.E. Gilbert, Vader: a parsimonious rule-based model for sentiment analysis of
  • social media text, Eighth International Conference on Weblogs and Social Media
  • (ICWSM-14), 2014 (Available at (20/04/16) Http://Comp. Social. Gatech. Edu/
  • Papers/Icwsm14. Vader. Hutto. Pdf.).
  • [84] M. Hu, B. Liu, Mining and summarizing customer reviews, Proceedings of the Tenth
  • ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
  • ACM, 2004, pp. 168–177.
  • [85] A. Rajaraman, J.D. Ullman, Recommendation systems, Mining of Massive Datasets,
  • 2011, pp. 307–341.
  • [86] J.R. Landis, G.G. Koch, An application of hierarchical kappa-type statistics in the
  • assessment of majority agreement among multiple observers, Biometrics (1977)
  • 363–374.
  • [87] J. Cao, Z. Wu, Y. Wang, Y. Zhuang, Hybrid collaborative filtering algorithm for
  • bidirectional web service recommendation, Knowledge and Information Systems 36
  • (3) (2013) 607–627.
  • [88] J.F. Hair, C.M. Ringle, M. Sarstedt, PLS-SEM: indeed a silver bullet, Journal of
  • Marketing Theory and Practice 19 (2) (2011) 139–152.
  • [89] D. Gefen, D. Straub, M.-C. Boudreau, Structural equation modeling and regression:
  • guidelines for research practice, Communications of the Association for Information
  • Systems 4:1 (2000) 7.
  • [90] W.W. Chin, The partial least squares approach to structural equation modeling,
  • Modern Methods for Business Research 295 (2) (1998) 295–336.
  • [91] W.W. Chin, B.L. Marcolin, P.R. Newsted, A partial least squares latent variable
  • modeling approach for measuring interaction effects: results from a Monte Carlo
  • simulation study and an electronic-mail emotion/adoption study, Information
  • Systems Research 14 (2) (2003) 189–217.
  • [92] K.J. Worsley, An improved Bonferroni inequality and applications, Biometrika 69
  • (2) (1982) 297–302.
  • [93] G.A. Miller, The magical number seven, plus or minus two: some limits on our
  • capacity for processing information, Psychological Review 63 (2) (1956) 81.
  • [94] J.R. Bettman, Memory factors in consumer choice: a review, The Journal of
  • Marketing (1979) 37–53.
  • [95] J.W. Payne, J.R. Bettman, Walking with the scarecrow: the information-processing
  • approach to decision research, Blackwell Handbook of Judgment and Decision
  • Making, 2004, pp. 110–132.
  • [96] I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing,
  • design, and application, Journal of Microbiological Methods 43 (1) (2000) 3–31.
  • [97] H. Bischof, W. Schneider, A.J. Pinz, Multispectral classification of Landsat-images
  • using neural networks, IEEE Transactions on Geoscience and Remote Sensing 30 (3)
  • (1992) 482–490.
  • [98] A. Krimpenis, P.G. Benardos, G.-C. Vosniakos, A. Koukouvitaki, Simulation-based
  • selection of optimum pressure die-casting process parameters using neural nets and
  • genetic algorithms, The International Journal of Advanced Manufacturing
  • Technology 27 (5–6) (2006) 509–517.
  • [99] S. Karsoliya, Approximating number of hidden layer neurons in multiple hidden
  • layer BPNN architecture, International Journal of Engineering Trends and
  • Technology 3 (6) (2012) 714–717.
  • [100] M.M. Ghiasi, A. Bahadori, S. Zendehboudi, A. Jamili, S. Rezaei-Gomari, Novel
  • methods predict equilibrium vapor methanol content during gas hydrate inhibition, Journal of Natural Gas Science and Engineering 15 (2013) 69–75.
  • Seye

Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors

Srivastana V, Karlo A, (2019), Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors, Journal of Interactive Marketing, Volume 48, November 2019, Pages 33-50

https://www.sciencedirect.com/science/article/abs/pii/S1094996818300744

Mots clés : Avis des consommateurs en ligne, Traitement du langage naturel, Exploration de texte, Analyse de contenu, Qualité de l’argument, Message valence

Résumé : Des études empiriques antérieures ont analysé l’influence des facteurs manifestes du contenu des avis en ligne et des facteurs liés aux examinateurs sur l’utilité des avis en ligne. Cependant, l’influence des facteurs de contenu latents, qui sont impliqués dans le texte et qui entraînent des perceptions différentielles de l’utilité des destinataires de l’avis, ont été ignorées. Par conséquent, en utilisant la lentille du modèle de vraisemblance d’élaboration, nous développons un modèle complet pour étudier l’influence des facteurs liés au contenu et aux réviseurs sur l’utilité de la révision. Cette étude comprend non seulement les facteurs manifestes liés au contenu et aux examinateurs, mais également les facteurs de contenu latents consistant en la qualité des arguments (exhaustivité, clarté, lisibilité et pertinence) et la valence du message. Les résultats montrent que les variables de contenu de révision latentes comme la qualité des arguments et la valence influencent mieux l’utilité des critiques et au-delà des facteurs liés au contenu de l’avis et aux réviseurs manifestes précédemment étudiés.. Les résultats montrent que les variables de contenu de révision latentes comme la qualité des arguments et la valence influencent mieux l’utilité des critiques et au-delà des facteurs liés au contenu de la revue et aux réviseurs manifestes précédemment étudiés. Les résultats montrent que les variables de contenu d’avis latents comme la qualité des arguments et la valence influencent mieux l’utilité des critiques et au-delà des facteurs liés au contenu de l’avis et aux examinateurs manifestes précédemment étudiés.

Grandes lignes :

  • Les facteurs de contenu latents (qualité des arguments et valence de la révision) sont des prédicteurs significatifs de l’utilité de l’avis.
  • L’étude définit opérationnellement la qualité de l’argument qui comprend l’exhaustivité, la clarté, la lisibilité et la pertinence.
  • Un examen complet réduit l’incertitude autour des différents attributs de produit / service.
  • La clarté et la lisibilité améliorées conduisent à une plus grande adoption de la recommandation de message dans un avis en ligne.
  • Le contenu non pertinent dans les avis réduit son utilité.
  • L’influence de la valence du message est complexe. Les avis positifs sont jugés moins utiles que les avis négatifs.

Ahluwalia, Rohini (2002), “How Prevalent Is the Negativity Effect in Consumer
Environments?” Journal of Consumer Research, 29, 2, 270–9.
Archer, Richard (1979), Self-Disclosure under Conditions of Self-Awareness.
Baek, Hyunmi, JoongHo Ahn, and Youngseok Choi (2012), “Helpfulness of
Online Consumer Reviews: Readers’ Objectives and Review Cues,”
International Journal of Electronic Commerce, 17, 2, 99–126.
Banerjee, Snehasish and Alton Chua (2016), “In Search of Patterns among
Travellers’ Hotel Ratings in Tripadvisor,” Tourism Management, 53,
125–31.
Belch, George E. and Michael A. Belch (2013), “A Content Analysis Study of
the Use of Celebrity Endorsers in Magazine Advertising,” International
Journal of Advertising, 32, 3, 369–89.
Berger, Jonah (2014), “Word of Mouth and Interpersonal Communication: A
Review and Directions for Future Research,” Journal of Consumer
Psychology, 24, 4, 586–607.
Bhattacherjee, Anol and Clive Sanford (2006), “Influence Processes for
Information Technology Acceptance: An Elaboration Likelihood Model,”
MIS Quarterly, 805–25.
Bickart, Barbara and Robert Schindler (2001), “Internet Forums as Influential
Sources of Consumer Information,” Journal of Interactive Marketing, 15, 3,
31–40.
BrightLocal (2018), “Local Consumer Review Survey 2018,” retrieved from
https://www.brightlocal.com/learn/local-consumer-review-survey/ (8th
November).
Cao, Qing, Wenjing Duan, and Qiwei Gan (2011), “Exploring Determinants of
Voting for the “Helpfulness” of Online User Reviews: A Text Mining
Approach,” Decision Support Systems, 50, 511–21.
Cheng, Yi-Hsiu and Hui-Yi Ho (2015), “Social Influence’s Impact on Reader
Perceptions of Online Reviews,” Journal of Business Research, 68, 4,
883–7.
Cheung, Christy, Matthew Lee, and Neil Rabjohn (2008), “The Impact of
Electronic Word-Of-Mouth: The Adoption of Online Opinions in Online
Customer Communities,” Internet Research, 18, 3, 229–47.
——— and Dimple Thadani (2012), “The Impact of Electronic Word-of-Mouth
Communication: A Literature Analysis and Integrative Model,” Decision
Support Systems, 54, 1, 461–70.
Cheung, Man Yee, Chuan Luo, Choon Ling Sia, and Huaping Chen (2009),
“Credibility of Electronic Word-of-Mouth: Informational and Normative
Determinants of online Consumer Recommendations,” International Journal of Electronic Commerce, 13, 4, 9–38.
———, Choon-Ling Sia, and Kevin K.Y. Kuan (2012), “Is this Review
Believable? A Study of Factors Affecting the Credibility of Online
Consumer Reviews from an ELM Perspective,” Journal of the Association
for Information Systems, 13, 8, 618.
Chintagunta, Pradeep, Shyam Gopinath, and Sriram Venkataraman (2010), “The
Effects of Online User Reviews on Movie Box Office Performance:
Accounting for Sequential Rollout and Aggregation across Local Markets,”
Marketing Science, 29, 5, 944–57.
Cohen, Stanley (1960), “Purification of a Nerve-Growth Promoting Protein from
the Mouse Salivary Gland and its Neuro-Cytotoxic Antiserum,” Proceedings
of the National Academy of Sciences, 46, 3, 302–11.
Cui, Geng, Hon-Kwong Lui, and Xiaoning Guo (2012), “The Effect of Online
Consumer Reviews on New Product Sales,” International Journal of
Electronic Commerce, 17, 1, 39–58.
Forman, Chris, Anindya Ghose, and Batia Wiesenfeld (2008), “Examining the
Relationship Between Reviews and Sales: The Role of Reviewer Identity
48 V. Srivastava, A.D. Kalro / Journal of Interactive Marketing 48 (2019) 33–50
Disclosure in Electronic Markets,” Information Systems Research, 19, 3,
291–313.
Fu, Xiaorong, Bin Zhang, Qinghong Xie, Liuli Xiao, and Yu Che (2011),
Impact of Quantity and Timeliness of EWOM Information on Consumer’s
Online Purchase Intention under C2C Environment.
Geometry Globul (2018), “The Influence of Influencers: A Research Study,”
available at http://gen.video/influencerstudy, Accessed date: 8 November
2018.
Ghose, Anindya and Panagiotis Ipeirotis (2011), “Estimating the Helpfulness
and Economic Impact of Product Reviews: Mining Text and Reviewer
Characteristics,” IEEE Transactions on Knowledge and Data Engineering,
23, 10, 1498–512.
Gottschalk, Sabrina and Alexander Mafael (2017), “Cutting Through the Online
Review Jungle- Investigating Selective eWOM Processing,” Journal of
Interactive Marketing, 37, 89–104.
Gretzel, Ulrike and Kyung Hyan Yoo (2008), Information and Communication
Technologies in Tourism35–46 . Use and Impact of Online Travel Reviews.
Hall, Edward T. (1976), Beyond Culture. New York: Double-day.
Hennig-Thurau, Thorsten, Kevin Gwinner, Gianfranco Walsh, and Dwayne
Gremler (2004), “Electronic Word-of-Mouth via Consumer-Opinion
Platforms: What Motivates Consumers to Articulate Themselves on the
Internet?” Journal of Interactive Marketing, 18, 1, 38–52.
Herr, Paul M., Frank R. Kardes, and John Kim (1991), “Effects of Word-ofMouth and Product-Attribute Information on Persuasion: An AccessibilityDiagnosticity Perspective,” Journal of Consumer Research, 17, 4, 454–62.
Hsieh, Hsiu-Fang and Sarah Shannon (2005), “Three Approaches to Qualitative
Content Analysis,” Qualitative Health Research, 15, 9, 1277–88.
Hu, Nan, Noi Sian Koh, and Srinivas K. Reddy (2014), “Ratings Lead you to
the Product, Reviews Help You Clinch It? The Mediating Role of Online
Review Sentiments on Product Sales,” Decision Support Systems, 57,
January, 42–53.
Huang, Albert, Kuanchin Chen, David Yen, and Trang Tran (2015), “A Study
of Factors that Contribute to Online Review Helpfulness,” Computers in
Human Behavior, 48, 17–27.
Huang, James, Stephanie Rogers, and Eunkwang Joo (2014), Improving
Restaurants by Extracting Subtopics from Yelp Reviews. iConference
(Social Media Expo).
Jiang, Yifan, Oscar de Bruijn, and Antonella de Angeli (2009), “The Perception
of Cultural Differences in Online Self-Presentation,” IFIP Conference on
Human-Computer Interaction, 672–85.
Kim, Su Jung, Ewa Maslowska, and Edward C. Malthouse (2018),
“Understanding the Effects of Different Review Features on Purchase
Probability,” International Journal of Advertising, 37, 1, 29–53.
King, Robert, Pradeep Racherla, and Victoria Bush (2014), “What We Know
and Don’t Know about Online Word-of-Mouth: A Review and Synthesis of
the Literature,” Journal of Interactive Marketing, 28, 3, 167–83.
Korfiatis, Nikolaos, Elena García-Bariocanal, and Salvador Sánchez-Alonso
(2012), “Evaluating Content Quality and Helpfulness of Online Product
Reviews: The Interplay of Review Helpfulness vs. Review Content,”
Electronic Commerce Research and Applications, 11, 3, 205–17.
Kowner, Rotem and Richard Wiseman (2003), “Culture and Status-Related
Behavior: Japanese and American Perceptions of Interaction in Asymmetric
Dyads,” Cross-Cultural Research, 37, 2, 178–210.
Krishnamoorthy, Srikumar (2015), “Linguistic Features for Review Helpfulness
Prediction,” Expert Systems with Applications, 42, 7, 3751–9.
Laroche, Michel (2010), “New Developments in Modeling Internet Consumer
Behavior: Introduction to the Special Issue,” Journal of Business Research,
915–8.
Lee, Chung Hun and David A. Cranage (2014), “”Toward Understanding
Consumer Processing of Negative Word-of-Mouth Communication: The
Roles of Opinion Consensus and Organizational Response Strategies”,”
Journal of Hospitality & Tourism Research, 38, 3, 330–60.
Lee, Hee Andy, Rob Law, and Jamie Murphy (2011), “Helpful Reviewers in
TripAdvisor, an Online Travel Community,” Journal of Travel & Tourism
Marketing, 28, 7, 675–88.
Li, Mengxiang, Liqiang Huang, Chuan-Hoo Tan, and Kwok-Kee Wei (2013),
“Helpfulness of Online Product Reviews as Seen by Consumers: Source and
Content Features,” International Journal of Electronic Commerce, 17, 4,
101–36.
Lim, Kai, Izak Benbasat, and Lawrence Ward (2000), “The Role of Multimedia
in Changing First Impression Bias,” Information Systems Research, 11, 2,
115–36.
Liu, Zhiwei and Sangwon Park (2015), “What Makes A Useful Online Review?
Implication for Travel Product Websites,” Tourism Management, 47,
140–51.
Luo, Chuan, Xin Luo, Laurie Schatzberg, and Choon Sia (2013), “Impact of
Informational Factors on Online Recommendation Credibility: The
Moderating Role of Source Credibility,” Decision Support Systems, 56,
92–102.
Moe, Wendy and David Schweidel (2012), “Online Product Opinions:
Incidence, Evaluation, and Evolution,” Marketing Science, 31, 3, 372–86.
——— and Michael Trusov (2011), “The Value of Social Dynamics in Online
Product Ratings Forums,” Journal of Marketing Research, 48, 3, 444–56.
Mohammad, Saif M. and Peter D. Turney (2013), “Crowdsourcing a Word–
Emotion Association Lexicon,” Computational Intelligence, 29, 3, 436–65.
Mudambi, Susan and David Schuff (2010), “What Makes a Helpful Review? A
Study of Customer Reviews on Amazon. Com,” MIS Quarterly, 34, 1,
185–200.
Muralidharan, Sidharth, Hye Jin Yoon, Yongjun Sung, Jessica Miller, and
Arturo Lee (2017), “Following the Breadcrumbs: An Analysis of Online
Product Review Characteristics by Online Shoppers,” Journal of Marketing
Communications, 23, 2, 113–34.
Pan, Lee-Yun and Jyh-Shen Chiou (2011), “How Much Can You Trust Online
Information? Cues for Perceived Trustworthiness of Consumer-Generated
Online Information,” Journal of Interactive Marketing, 25, 2, 67–74.
Pan, Yue and Jason Zhang (2011), “Born Unequal: A Study of the Helpfulness
of User-Generated Product Reviews,” Journal of Retailing, 87, 4, 598–612.
Park, Do-Hyung, Jumin Lee, and Ingoo Han (2007), “The Effect of On-line
Consumer Reviews on Consumer Purchasing Intention: The Moderating
Role of Involvement,” International Journal of Electronic Commerce, 11,
4, 125–48.
——— and ——— (2008), “eWOM Overload and its Effect on Consumer
Behavioral Intention Depending on Consumer Involvement,” Electronic
Commerce Research and Applications, 7, 4, 386–98.
Pentina, Iryna, Ainsworth Anthony Bailey, and Lixuan Zhang (2018),
“Exploring Effects of Source Similarity, Message Valence, and Receiver
Regulatory Focus on Yelp Review Persuasiveness and Purchase Intentions,” Journal of Marketing Communications, 24, 2, 125–45.
Petty, Richard and John Cacioppo (1986), “The Elaboration Likelihood Model
of Persuasion,” Advances in Experimental Social Psychology, 11, 1, 673–5.
Pornpitakpan, Chanthika (2004), “The Persuasiveness of Source Credibility: A
Critical Review of Five Decades Evidence,” Journal of Applied Social
Psychology, 34, 2, 243–81.
Racherla, Pradeep and Wesley Friske (2012), “Perceived ‘Usefulness’ of Online
Consumer Reviews: An Exploratory Investigation across Three Services
Categories,” Electronic Commerce Research and Applications, 11, 6,
548–59.
Ratchford, Brian, Myung-Soo Lee, and Debabrata Talukdar (2003), “The
Impact of the Internet on Information Search for Automobiles,” Journal of
Marketing Research, 40, 2, 193–209.
Rui, Jian and Michael Stefanone (2013), “Strategic Self-Presentation Online: A
Cross-Cultural Study,” Computers in Human Behavior, 29, 1, 110–8.
Schlosser, Ann (2011), “Can Including Pros and Cons Increase the Helpfulness
and Persuasiveness of Online Reviews? The Interactive Effects of Ratings
and Arguments,” Journal of Consumer Psychology, 21, 3, 226–39.
Sen, Shahana and Dawn Lerman (2007), “Why Are You Telling Me This? An
Examination into Negative Consumer Reviews on the Web,” Journal of
Interactive Marketing, 21, 4, 76–94.
Shriver, Scott, Harikesh Nair, and Reto Hofstetter (2013), “Social Ties and
User-Generated Content: Evidence from an Online Social Network,”
Management Science, 59, 6, 1425–43.
Skowronski, John J. and Donal E. Carlston (1989), “Negativity and Extremity
Biases in Impression Formation: A Review of Explanations,” Psychological
Bulletin, 105, 1, 131.
V. Srivastava, A.D. Kalro / Journal of Interactive Marketing 48 (2019) 33–50 49
Smith, Malcolm and Richard Taffler (1992), “Readability and Understandability: Different Measures of the Textual Complexity of Accounting
Narrative,” Accounting, Auditing & Accountability Journal, 5, 4.
Sparks, Beverley, Helen Perkins, and Ralf Buckley (2013), “Online Travel
Reviews as Persuasive Communication: The Effects of Content Type,
Source, and Certification Logos on Consumer Behavior,” Tourism
Management, 39, 1–9.
Stringam, Betsy Bender and John Gerdes Jr. (2010), “An Analysis of Word-OfMouse Ratings and Guest Comments of Online Hotel Distribution Sites,”
Journal of Hospitality Marketing & Management, 19, 7, 773–96.
Sussman, Stephanie and Wendy Siegal (2003), “Informational Influence in
Organizations: An Integrated Approach to Knowledge Adoption,” Information Systems Research, 14, 1, 47–65.
Vermeulen, Ivar and Daphne Seegers (2009), “Tried and Tested: The Impact of
Online Hotel Reviews on Consumer Consideration,” Tourism Management,
30, 1, 123–7.
Vessey, Iris and Dennis Galletta (1991), “Cognitive Fit: An Empirical Study of
Information Acquisition,” Information Systems Research, 2, 1, 63–84.
Wang, Xia, Chunling Yu, and Yujie Wei (2012), “Social Media Peer
Communication and Impacts on Purchase Intentions: A Consumer
Socialization Framework,” Journal of Interactive Marketing, 26, 4,
198–208.
Ward, James and Amy Ostrom (2003), “The Internet as Information Minefield:
An Analysis of the Source and Content of Brand Information Yielded by
Net Searches,” Journal of Business Research, 56, 11, 907–14.
Weiss, Allen, Nicholas Lurie, and Deborah MacInnis (2008), “Listening to
Strangers: Whose Responses Are Valuable, How Valuable Are They, and
Why?” Journal of Marketing Research, 45, 4, 425–36.
Willemsen, Lotte, Peter Neijens, Fred Bronner, and Jan De Ridder (2011),
““Highly Recommended!” The Content Characteristics and Perceived
Usefulness of Online Consumer Reviews,” Journal of Computer-Mediated
Communication, 17, 1, 19–38.
Würtz, Elizabeth (2005), “Intercultural Communication on Web Sites: A CrossCultural Analysis of Web Sites from High-Context Cultures and Low-Context
Cultures,” Journal of Computer-Mediated Communication, 11, 1, 274–99.
Xiaoping, Zheng (2008), An Empirical Study of the Impact of Online Review on
Internet Consumer Purchasing Decision. China People’s University5.
Xu, Pei, Liang Chen, and Radhika Santhanam (2015), “Will Video Be the Next
Generation of eCommerce Product Reviews? Presentation Format and the
Role of Product Type,” Decision Support Systems, 73, 85–96.
Yang, Jun and Enping Shirley Mai (2010), “Experiential Goods with Network
Externalities Effects: An Empirical Study of Online Rating System,”
Journal of Business Research, 63, 9-10, 1050–7.
Ye, Qiang, Rob Law, Bin Gu, and Wei Chen (2011), “The Influence of UserGenerated Content on Traveler Behavior: An Empirical Investigation on the
Effects of e-Word-of-Mouth to Hotel Online Bookings,” Computers in
Human Behavior, 27, 2, 634–9.
Zakaluk, Beverly and S. Jay Samuels (1988), Readability: It’s Past, Present,
and Future. 800 Barksdale Rd., PO Box 8139, Newark, DE l9714–8139:
International Reading Association.
Zhang, Jason, Georgiana Craciun, and Dongwoo Shin (2010), “When Does
Electronic Word-of-Mouth Matter? A Study of Consumer Product
Reviews,” Journal of Business Research, 63, 12, 1336–41.
Zhang, Lun, Tai-Quan Peng, Ya-Peng Zhang, Xiao-Hong Wang, and Jonathan J.H.
Zhu (2014), “Content or Context: Which Matters More in Information Processing
on Microblogging Sites,” Computers in Human Behavior, 31, 242–9.

When the performance comes into play: The influence of positive online consumer reviews on individuals’ post-consumption responses

Ortega B, (2020), When the performance comes into play: The influence of positive online consumer reviews on individuals’ post-consumption responses, Journal of Business Research

Volume 113, May 2020, Pages 422-435

https://www.sciencedirect.com/science/article/abs/pii/S0148296319304965

Mots clés : Avis des consommateurs en ligne, Niveau de performance, Positivité perçue, Réponses post-consommation, Forme fonctionnelle en U

Résumé : Cet article vise à étudier l’influence des avis post achat positifs sur les réponses post-consommation, à savoir l’attitude envers les entreprises et les intentions de rachat. Il différencie si le niveau de performance pendant la consommation était élevé ou faible, c’est-à-dire si le produit a atteint les objectifs fixés par les consommateurs. À cette fin, le document aborde les avis post achat positifs dans une double approche. Premièrement, il analyse l’effet de l’intensité de valence positive, en tenant compte des avis post achat neutres-indifférents, modérément positifs et extrêmement positifs. Deuxièmement, il teste l’influence de la positivité perçue des avis post achat par les individus. Les résultats montrent que les mêmes avis post achat peuvent avoir une influence positive ou négative sur les individus.

Grandes lignes :

  • Les avis post achat positifs et les performances influencent conjointement les réponses post-consommation
  • Les avis post achat positifs peuvent avoir des effets négatifs sur les réponses post-consommation
  • Les relations entre la positivité perçue des avis post achat et les réponses post-consommation suivent des formes fonctionnelles curvilignes
  • Si les performances sont faibles, des relations en U inversé sont identifiées
  • Si les performances sont élevées, des relations en U sont identifiées


Aaker, J., Drolet, A., & Griffin, D. (2008). Recalling recall bias. Journal of Consumer
Research, 35, 268–278.
Abelson, R. P. (1995). Attitude extremity. In R. E. Petty, & J. A. Krosnick (Eds.). Attitude
strength: Antecedents and consequences (pp. 25–42). Mahwah, NJ: Lawrence Erlbaum.
Alexander, C. S., & Jay, B. H. (1978). The use of vignettes in survey research. Public
Opinion Quarterly, 42(1), 93–104.
Anderson, E., & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of
Service Research, 3(2), 107–120.
Aurier, P., & Siadou-Martin, B. (2007). Perceived justice and consumption experience
evaluations. A qualitative and experimental investigation. International Journal of
Service Industry Management, 18(5), 450–471.
Beerli-Santana, A., & Martín-Santana, J. (2017). How does confirmation of motivations
influence on the pre- and post-visit change of image of a destination? European
Journal of Management and Business Economics, 26(7), 238–251.
Bendapudi, N., & Leone, R. P. (2003). Psychological implications of customer participation in co-production. Journal of Marketing, 67(January), 14–28.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation confirmation model. MIS Quarterly, 25(3), 351–370.
Blackwell, R., Miniard, P., & Engel, J. F. (2005). Consumer behavior (5ª ed.). Florida:
Dryden Press.
B. Hernández-Ortega Journal of Business Research 113 (2020) 422–435
433
Bone, P. F. (1995). Word-of-mouth effects on short-term and long-term product judgments. Journal of Business Research, 32, 213–223.
Bridges, E. (1993). Service attributes: Expectations and judgments. Psychology and
Marketing, 10(3), 185–197.
BrightLocal (2017). Local consumer review survey. Available at https://www.brightlocal.
com/learn/local-consumer-review-survey/.
Bronner, A. E., & de Hoog, R. (2011). Vacationers and eWOM: Who posts, and why,
where, and what? Journal of Travel Research, 50(1), 15–26.
Buunk, A. P., & Gibbons, F. X. (2007). Social comparison: The end of a theory and the
emergence of a field. Organizational Behavior and Human Decision Processes, 102,
3–21.
Cadotte, E. R., Woodruff, R. B., & Jenkins, R. L. (1987). Expectations and norms in models
of consumer satisfaction. Journal of Marketing Research, 19(4), 491–504.
Casalo, L., Flavián, C., Guinaliu, M., & Ekinci, Y. (2015). Avoiding the dark side of positive online consumer reviews: Enhancing reviews’ usefulness for high risk-averse
travelers. Journal of Business Research, 68(9), 1829–1835.
Chan, H., & Cui, S. (2011). The contrasting effects of negative word of mouth in the postconsumption stage. Journal of Consumer Psychology, 21, 324–337.
Chang, E.-C., Lv, Y., Chou, T.-J., He, Q., & Song, Z. (2014). Now or later: Delay’s effects on
post-consumption emotions and consumer loyalty. Journal of Business Research, 67,
1368–1375.
Chen, Y., & Xie, J. (2008). Online consumer review: Word of mouth as a new element of
marketing communication mix. Management Science, 54, 447–491.
Chua, B.-L., Lee, S., & Han, H. (2017). Consequences of cruise line involvement: A
comparison of first-time and repeat passengers. International Journal of Contemporary
Hospitality Management, 29(6), 1658–1683.
Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.
Cowley, E. (2014). Consumers telling consumption stories: Word-of-mouth and retrospective evaluations. Journal of Business Research, 67, 1522–1529.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of
information technology. MIS Quarterly, 19(2), 189–211.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer
technology: A comparison of two theoretical models. Management Science, 35,
982–1003.
Dellarocas, C., Zhang, X., & Awd, N. (2007). Exploring the value of online product reviews
in forecasting sale: The case of motion pictures. Journal of Interactive Marketing, 21(4),
23–45.
Dias, L., & Lobel, M. (1997). Social comparison in medically high-risk pregnant women.
Journal of Applied Social Psychology, 27, 1629–1649.
Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online WOM and product
sales – An empirical investigation of the movie industry. Journal of Retailing, 84(2),
233–242.
Duverger, P. (2013). Curvilinear effects of user-generated content on hotels’ market share:
A dynamic panel-data analysis. Journal of Travel Research, 52, 465–478.
Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Fort Worth, TX: Harcourt
Brace College Publishers.
Eisenbeiss, M., CorneliBen, M., Backhaus, K., & Hoyer, W. (2014). Nonlinear and asymmetric returns on customer satisfaction: Do they vary across situations and consumers? Journal of Academy of Marketing Science, 42, 242–263.
Engel, J., Kollat, D., & Blackwell, R. (1968). Consumer behavior (1st ed.). New York: Holt,
Rinehart and Winston.
Fieller, E. C. (1954). Some problems in interval estimation. Journal of the Royal Statistical
Society, Series B (Methodological), 16(2), 175–185.
Floyd, K., Freling, R., Alhoqail, S., Young Cho, H., & Freling, T. (2014). How online
product reviews affect retail sales: A meta-analysis. Journal of Retailing, 90(2),
217–232.
Forman, C., Ghose, A., & Wiesenfield, B. (2008). Examining the relationship between
reviews and sales: The role of reviewer identity disclosure in electronic markets.
Information Systems Research, 19(3), 291–313.
Gilly, M. C., Graham, J. L., Wolfinbarger, M. F., & Yale, L. J. (1998). A dyadic study of
interpersonal information search. Journal of Academy of Marketing Science, 26,
83–100.
Grace, D., & O’Cass, A. (2001). Examining service experiences and post-consumption
evaluations. Journal of Services Marketing, 18(6), 450–461.
Haans, R. F. J., Pieters, C., & He, Z.-L. (2016). Thinking about U: Theorizing and testing Uand inverted U-shaped relationships in strategy research. Strategic Management
Journal, 37(7), 1177–1195.
Hamby, A., Danisloski, K., & Brinberg, D. (2015). How consumer reviews persuade
through narratives. Journal of Business Research, 68, 1242–1250.
Heimbach, I., & Hinz, O. (2016). The impact of content sentiment and emotionality on
content virality. International Journal of Research in Marketing, 33(3), 695–701.
Helgeson, V. S., & Taylor, S. E. (1993). Social comparison and adjustment among cardiac
patients. Journal of Applied Social Psychology, 23, 1171–1195.
Herr, P., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute
information on persuasion: an accessibility-diagnosticity perspective. Journal of
Consumer Research, 17(4), 454–462.
Holbrook, M. B., & Moore, W. L. (1981). Feature interactions in consumer judgments of
verbal versus pictorial presentations. Journal of Consumer Research, (June), 103–113.
Homburg, C., Koschate, N., & Hoyer, W. D. (2005). Do satisfied customers really pay
more? A study of the relationship between customer satisfaction and willingness to
pay. Journal of Marketing, 69, 84–96.
Hosany, S., & Prayag, G. (2013). Patterns of tourists’ emotional responses, satisfaction,
and intention to recommend. Journal of Business Research, 66, 730–737.
Hu, Y., & Li, X. (2011). Context-dependent product evaluations: A empirical analysis of
Internet book reviews. Journal of Interactive Marketing, 25, 123–133.
Jang, S., & Namkung, Y. (2009). Perceived quality, emotions, and behavioral intentions:
Application of an extended Mehrabian-Russell model to restaurants. Journal of
Business Research, 62, 451–460.
Jones, P., & Chen, M. M. (2011). Factors determining hotel selection: Online behavior by
leisure travelers. Tour Hospitality Research, 11, 83–95.
Kahneman, D., & Tversky (1979). Prospect theory: An analysis of decision under risk.
Econometrica, 47(2), 263–292.
Kennedy, J. R., & Thirkell, P. C. (1988). An extended perspective on the antecedents of
satisfaction. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior,
1, 2–9.
Kim, S., Chung, J.-E., & Suh, Y. (2016). Multiple reference effects on restaurant evaluations: A cross-cultural study. International Journal of Contemporary Hospitality
Management, 28(7), 1441.1466.
Koo, D.-M. (2015). The strength of no tie relationship in an online recommendation.
European Journal of Marketing, 49(7/8), 1163–1183.
Kostyra, D. S., Reiner, J., Natter, M., & Klapper, D. (2016). Decomposing the effects of
online customer reviews on brand, price, and product attributes. International Journal
of Research in Marketing, 33(1), 11–26.
Lambert, J. (2013). Digital storytelling: Capturing lives, creating community. Berkeley, CA:
Digital Diner Press.
Lee, D. (2012). Powerful storytelling techniques. Association for Talent Development.
Lee, J., Lee, J., & Shin, H. (2011). The long tail or the short tail: The category-specific
impact of eWOM on sales distribution. Decision Support Systems, 51(3), 466–479.
Lee, J., Park, D.-H., & Han, I. (2008). The effect of negative online consumer reviews on
product attitude: An information processing view. Electronic Commerce Research and
Applications, 7, 341–352.
Lee, J., & Pee, L. G. (2013). Reading consumer reviews to confirm my expectations: The
accelerated impact of confirmation under extreme review tones. Pacific Asia conference on information systems (PACIS) proceedings (pp. 76). . Available in http://aisel.
aisnet.org/cgi/viewcontent.cgi?article=1076&context=pacis2013 (12/19/2017) .
Lee, M., & Youn, S. (2009). Electronic word of mouth (eWOM): How eWOM platforms
influence consumer product judgment. International Journal of Advertising: The
Quarterly Review of Marketing Communications, 28(3), 473–499.
Lin, C.-P., Tsai, Y. H., & Chiu, C.-K. (2009). Modeling customer loyalty from an integrative
perspective of self-determination theory and expectation-confirmation theory.
Journal of Business Psychology, 24, 315–326.
Lin, Z., & Heng, C.-S. (2015). The paradoxes of word of mouth in electronic commerce.
Journal of Management Information Systems, 32(4), 246–284.
Lind, J., & Mehlum, H. (2010). With or without you? The appropriate test for a u-shaped
relationship. Oxford Bulletin of Economics and Statistics, 72(1), 109–118.
Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue.
Journal of Marketing, 70, 74–89.
Loftus, E. (1975). Leading questions and the eyewitness report. Cognitive Psychology, 7,
560–572.
Loftus, E. (1979). Reactions to blatantly contradictory information. Memory & Cognition,
7, 368–374.
Moe, W. W., & Trusov, M. (2011). The value of social dynamics in online product ratings
forums. Journal of Marketing Research, 48(3), 444–456.
Morales, A. C., Amir, O., & Lee, L. (2017). Keeping it real experimental, research –
Understanding when, where, and how to enhance realism and measure consumer
behavior. Journal of Consumer Research, 44(2), 465–476.
Mudambi, S. M., & Schuff, D. (2010). What makes a helpful review? A study of customer
reviews on Amazon.com. MIS Quarterly, 34(1), 185–200.
Netemeyer, R. G., Maxham, J. G., & Pullig, C. (2005). Conflicts in the work-family interface: Links to job stress, customer service employee performance, and customer
purchase intent. Journal of Marketing, 69, 130–143.
Nicosia, F. M. (1966). Consumer decision process: Marketing and advertising complications.
Englewood Cliffs, New York: Prentice Hall.
Nunnally, J. (1978). Psychometric theory. New York: McGraw-Hill.
Oghuma, A. P., Libaque-Saenz, C. F., & Chang, Y. (2016). An expectation-confirmation
model of continuance intention to use mobile instant messaging. Telematics and
Informatics, 33, 34–47.
Oliver, R. L. (1977). Effect of expectation and disconfirmation on post-exposure product
evaluations: An alternative interpretation. Journal of Applied Psychology, 62(4),
480–486.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 46–49.
Oliver, R. L., & DeSarbo, W. S. (1998). Response determinants in satisfaction judgments.
Journal of Consumer Research, 14(2), 495–507.
Olshavsky, R. W., & Miller, J. A. (1972). Consumer expectations, product performance,
and perceived product quality. Journal of Marketing Research, 9, 19–21.
ONTSI (2017). Perfil sociodemografico de los internautas. Analisis de datos INE 2017.
Available in: Observatorio Nacional de las telecomunicaciones y de la sociedad de la
informaciónhttps://www.ontsi.red.es/ontsi/sites/ontsi/files/Perfil%20sociodemogr
%C3%A1fico%20de%20los%20internautas%202017.pdf.
Pan, L.-Y., & Chiou, J.-S. (2011). How much can you trust online information? Cues for
perceived trustworthiness of consumer-generated online information. Journal of
Interactive Marketing, 25(2), 67–74.
Pansari, A., & Kumar, V. (2017). Customer engagement: The construct, antecedents, and
consequences. Journal of the Academy of Marketing Science, 45(3), 294–311.
Park, C., & Lee, T. (2009). Information direction, website reputation and eWOM effect: A
moderating role of product type. Journal of Business Research, 62(1), 61–67.
Park, D., & Kim, S. (2008). The effects of consumer knowledge on message processing of
electronic word-of-mouth via online consumer reviews. Electronic Commerce Research
and Applications, 7(4), 399–410.
Park, D., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral
B. Hernández-Ortega Journal of Business Research 113 (2020) 422–435
434
intention depending on consumer involvement. Electronic Commerce Research and
Applications, 7(4), 386–398.
Park, S., & Nicolau, J. L. (2015). Asymmetric effects of online consumer review. Annals of
Tourism Research, 50, 67–83.
Pavlou, P., & Dimoka, A. (2006). The nature and role of feedback text comments in online
marketplace: Implications for trust building, price premiums, and seller differentiation. Information Systems Research, 17(4), 392–414.
Purnawirawan, N., De Pelsmacker, P., & Dens, N. (2012). Balance and sequence in online
reviews: How perceived usefulness affects attitudes and intentions. Journal of
Interactive Marketing, 26(4), 244–255.
Schindler, R. M., & Bickart, B. (2005). Published word of mouth: Referable, consumergenerated information on the Internet. In C. P. Haugtvedt, K. A. Machleit, & R. F.
Yalch (Eds.). Online consumer psychology: Understanding and influencing consumer behavior in the virtual world (pp. 35–61). Mahwah, NJ: Lawrence Erlbaum.
Seddon, P., & Kiew, M. Y. (1996). A partial test and development of the DeLone and
McLean model of IS success. Australian Journal of Information Systems, 4, 90–109.
Sherif, M., & Hovland, C. I. (1961). Social judgment: Assimilation and contrast effects in
communication and attitude change. Oxford, England: Yale University Press.
Shi, X., & Liao, Z. (2017). Online consumer review and group-buying participation: The
mediating effects of consumer beliefs. Telematics and Informatics, 34, 605–617.
Sirakaya, E., & Wooside, A. G. (2005). Building and testing theories of decision making by
travelers. Tourism Management, 26(6), 815–832.
Söderlund, M. (2002). Customer familiarity and its effects on satisfaction and behavioral
intentions. Pyschology and Marketing, 19, 861–879.
Sparks, B., & Browning, V. (2011). The impact of online reviews on hotel booking intentions and trust. Tourism Management, 32(6), 1310–1323.
Staples, S., Wong, I., & Seddon, P. B. (2002). Having expectations of information systems
benefits: Does it really matter? Information & Management, 40, 115–131.
Tang, T., Fang, E., & Wang (2014). Is neutral really neutral? The effects of neutral usergenerated content on product sales. Journal of Marketing, 78, 41–58.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of
competing models. Information Systems Research, 6(2), 144–176.
Triantafillidou, A., & Siomkos, G. (2014). Consumption experience outcomes:
Satisfaction, nostalgia intensity, word-of-mouth communication and behavioral intentions. Journal of Consumer Marketing, 31(6/7), 526–540.
Tsao, W.-H., Hsieh, M.-T., Shih, L.-W., & Lin, T. M. Y. (2015). Compliance with eWOM:
The influence of hotel reviews on booking intention from the perspective of consumer
conformity. International Journal of Hospitality Management, 46, 99–111.
Tse, D. K., & Wilton, P. C. (1988). Models of consumer satisfaction formation: An extension. Journal of Marketing Research, XXV, 204–212.
Viglia, G., Furlan, R., & Ladrón-de-Guevara, A. (2014). Please, talk about it! When hotel
popularity boosts preferences. International Journal of Hospitality Management, 42,
155–164.
Vlachos, P. A., Pramatari, K., & Vrechopolos, A. (2011). Too much of a good thing:
Curvilinear effects of service of service evaluation constructs and the mediating role
of trust. Journal of Service Marketing, 25(6), 440–450.
Walsh, G., Shiu, E., Hassan, L. M., Michaelidou, N., & Beatty, S. (2011). Emotions, storeenvironmental cues, store-choice criteria, and marketing outcomes. Journal of
Business Research, 64, 737–744.
Wang, F., Liu, X., & Fang, E. (2015). User reviews variance, critic reviews variance, and
product sales: An exploration of customer breadth and depth effects. Journal of
Retailing, 91(3), 372–389.
Wirtz, J., & Chew, P. (2002). The effects of incentives deal proneness, satisfaction and tie
strength on word-of-mouth behaviour. International Journal of Service Industry
Management, 13(2), 141–162.
Xu, J., & Schwartz, N. (2009). Do we really need a reason to indulge? Journal of Marketing
Research, 46, 25–36.
Xu, X. (2019). Examining an asymmetric effect between online customer reviews emphasis and overall satisfaction determinants. Journal of Business Research. https://doi.
org/10.1016/j.jbusres.2018.07.022.
Ye, Q., Law, R., Gu, B., & Chen, W. (2011). The influence of user-generated content on
traveler behavior: An empirical investigation on the effects of e-word-of-mouth to
hotel online bookings. Computers in Human Behavior, 27, 634–639.
Yi, Y. (1990). A critical review of consumer satisfaction. In V. A. Zeithaml (Ed.). Review of
marketing (pp. 68–123). Chicago: American Marketing Association.
Yi, Y., & La, S. (2003). The moderating role of confidence in expectations and the
asymmetric influence of disconfirmation on customer satisfaction. The Services
Industries Journal, 23(5), 20–47.
Yim, C. K., Chan, K. W., & Hung, K. (2007). Multiple reference effects in service evaluations: Roles of alternative attractiveness and self-image congruity. Journal of
Retailing, 83(1), 147–157.
Yoo, K. H., & Gretzel, U. (2008). What motivates consumers to write online travel reviews? Information Technology & Tourism, 10(4), 283–295.
Zeelenberg, M., & Pieters, R. (1999). Comparing service delivery to what might have been
behavioral responses to regret and disappointment. Journal of Service Research, 2(1),
86–97.
Zeelenberg, M., van Dijk, W. W., Manstead, A. S. R., & van der Plight, J. (2000). On bad
decisions and disconfirmed expectancies: The psychology of regret and disappointment. Cognition and Emotion, 14, 521–541.
Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1993). The nature and determinants of
customer expectations of service. Journal of the Academy of Marketing Science, 21(1),
1–12.
Zhang, J. Q., Craciun, G., & Shin, D. (2010). When does electronic word-of-mouth matter?
A study of consumer product reviews. Journal of Business Research, 63(12),
1336–1341.

Examining the role of emotion in online consumer reviews of various attributes in the surprise box shopping model

Xu X, (2020), Examining the role of emotion in online consumer reviews of various attributes in the surprise box shopping model, Decision Support Systems

Available online 15 June 2020, 113344

https://www.sciencedirect.com/science/article/pii/S0167923620300993

Mots clés : Émotion des consommateurs, Avis des consommateurs en ligne, Attributs de produit et de service, Boite surprise

Résumé : La concurrence féroce entre les détaillants exige la création de nouveaux modèles de vente au détail. Le marketing émotionnel visant à susciter les émotions positives des consommateurs attire la demande. Dans ce contexte, le modèle de la boîte surprise, dans lequel une entreprise notifie les consommateurs par le biais d’un abonnement, puis envoie des boîtes de courrier de nouveaux produits sans répétition, a émergé pour se développer rapidement. Cette étude examine le rôle des émotions des consommateurs dans leur comportement de rédaction d’avis en ligne dans le contexte du modèle de magasinage surprise. Nous trouvons pour les attributs du produit, du service et de l’accomplissement, mais pas pour la valeur; les consommateurs ont tendance à commenter davantage dans les avis lorsqu’ils ont une émotion extrême, positive ou négative. Les consommateurs commentent encore plus lorsqu’ils ont une émotion extrêmement négative que lorsqu’ils ont une émotion extrêmement positive. En outre, nous constatons que la période d’abonnement, l’expérience et la satisfaction globale des consommateurs affectent leur comportement de révision, qui dépend des attributs particuliers sur lesquels les consommateurs commentent.

Grandes lignes :

  • Nous exaltons l’émotion des consommateurs et les retours en ligne dans le modèle de boîte surprise.
  • L’émotion positive et négative des consommateurs affecte les évaluations en ligne de chaque attribut.
  • La période d’abonnement et l’expérience affectent les évaluations en ligne de chaque attribut.
  • La satisfaction globale des consommateurs affecte les évaluations en ligne de chaque attribut.
  • L’émotion a différents effets modérateurs sur les avis en fonction des attributions.

[1] H. Abdi, Singular value decomposition (SVD) and generalized singular value decomposition, Encyclopedia of Measurement and Statistics (2007) 907–912.
[2] R.M. Al-dweeri, Z.M. Obeidat, M.A. Al-dwiry, M.T. Alshurideh, A.M. Alhorani, The
impact of e-service quality and e-loyalty on online shopping: moderating effect of esatisfaction and e-trust, International Journal of Marketing Studies 9 (2) (2017)
92–103.
[3] M. Antioco, K. Coussement, Misreading of consumer dissatisfaction in online product reviews: writing style as a cause for bias, Int. J. Inf. Manag. 38 (1) (2018)
301–310.
[4] D. Arli, C. Leo, F. Tjiptono, Investigating the impact of guilt and shame proneness
on consumer ethics: a cross national study, Int. J. Consum. Stud. 40 (1) (2016)
2–13.
[5] P. Bagdasarian, What it Takes to Start a Subscription Box Company, Accessed from,

  1. https://startupnation.com/start-your-business/start-subscription-boxcompany/.
    [6] K. Baker, Singular value decomposition tutorial, The Ohio State University, 2005
    Accessed from http://site.iugaza.edu.ps/ahdrouss/files/2010/03/Singular_Value_
    Decomposition_Tutorial.pdf (Accessed on May 1, 2020).
    [7] M. Bashir, R. Verma, Internal factors & consequences of business model innovation,
    Manag. Decis. 57 (1) (2019) 262–290.
    [8] M. Bui, A.S. Krishen, K. Bates, Modeling regret effects on consumer post-purchase
    decisions, Eur. J. Mark. 45 (7/8) (2011) 1068–1090.
    [9] A.S. Cantallops, F. Salvi, New consumer behavior: a review of research on eWOM
    and hotels, Int. J. Hosp. Manag. 36 (2014) 41–51.
    [10] L.M. Caro, J.A.M. García, Cognitive–affective model of consumer satisfaction. An
    exploratory study within the framework of a sporting event, J. Bus. Res. 60 (2)
    (2007) 108–114.
    [11] J. Chen, S. Dibb, Consumer trust in the online retail context: exploring the antecedents and consequences, Psychol. Mark. 27 (4) (2010) 323–346.
    [12] L. Chen, A. Baird, D. Straub, A linguistic signaling model of social support exchange
    in online health communities, Decis. Support. Syst. 130 (2020) 113233.
    [13] Y.L. Chen, C.L. Chang, C.S. Yeh, Emotion classification of YouTube videos, Decis.
    Support. Syst. 101 (2017) 40–50.
    [14] C.M. Cheung, M.K. Lee, What drives consumers to spread electronic word of mouth
    in online consumer-opinion platforms, Decis. Support. Syst. 53 (1) (2012) 218–225.
    [15] A.Y.L. Chong, E. Ch’ng, M.J. Liu, B. Li, Predicting consumer product demands via
    big data: the roles of online promotional marketing and online reviews, Int. J. Prod.
    Res. 55 (17) (2017) 5142–5156.
    [16] E.K. Clemons, P.F. Nunes, Carrying your long tail: delighting your consumers and
    managing your operations, Decis. Support. Syst. 51 (4) (2011) 884–893.
    [17] G. Craciun, W. Zhou, Z. Shan, Discrete emotions effects on electronic word-ofmouth helpfulness: the moderating role of reviewer gender and contextual emotional tone, Decis. Support. Syst. 130 (2020) 113226.
    [18] W.R. Darden, M.J. Dorsch, An action strategy approach to examining shopping
    behavior, J. Bus. Res. 21 (3) (1990) 289–308.
    [19] DesMarais, C., 2016. Here’s how much people like their subscription boxes.
    Accessed from https://www.inc.com/christina-desmarais/heresdata-showing-thecrazy-growth-of-subscription-box-services-infographic.html. (Accessed on May 2,
    2020).
    [20] S.P. Eslami, M. Ghasemaghaei, K. Hassanein, Which online reviews do consumers
    find most helpful? A multi-method investigation, Decis. Support. Syst. 113 (2018)
    32–42.
    [21] N. Evangelopoulos, Citing Taylor: tracing Taylorism’s technical and sociotechnical
    duality through latent semantic analysis, Journal of Business & Management 17 (1)
    (2011) 57–74.
    [22] R. Filieri, What makes an online consumer review trustworthy? Ann. Tour. Res. 58
    (2016) 46–64.
    [23] A. Gupta, M. Eilert, J.W. Gentry, Can I surprise myself? A conceptual framework of
    surprise self-gifting among consumers, J. Retail. Consum. Serv. 54 (2020) 101712.
    [24] A. Gustafsson, M.D. Johnson, Determining attribute importance in a service satisfaction model, J. Serv. Res. 7 (2) (2004) 124–141.
    [25] J. Gutman, A means-end chain model based on consumer categorization processes,
    J. Mark. 46 (2) (1982) 60–72.
    [26] T.H. Ho, Y.S. Zheng, Setting customer expectation in service delivery: an integrated
    marketing-operations perspective, Manag. Sci. 50 (4) (2004) 479–488.
    [27] Hopcroft, J., & Kannan, R. (2012). Chapter 4 Singular value decomposition in the
    book of Computer Science Theory for the Information Age. Accessed from https://
    www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/hopcroft-kannan-feb2012.
    pdf. (Accessed on May 1, 2020).
    [28] S. Hosany, G. Prayag, Patterns of tourists’ emotional responses, satisfaction, and
    intention to recommend, J. Bus. Res. 66 (6) (2013) 730–737.
    [29] J.A. Howard, Consumer Behavior: Application of Theory, Vol. 325 McGraw-Hill,
    New York, 1977.
    [30] P. Husbands, H. Simon, C.H.Q. Ding, On the use of the singular value decomposition
    for text retrieval, Computational Information Retrieval 5 (2001) 145–156.
    [31] K. Hutter, S. Hoffmann, Surprise, surprise. Ambient media as promotion tool for
    retailers, J. Retail. 90 (1) (2014) 93–110.
    [32] S. Jang, J. Chung, V.R. Rao, The importance of functional and emotional content in
    online consumer reviews for product sales: Evidence from the mobile gaming
    market, Journal of Business Research (2019) In Press.
    [33] N.A. Johnson, R.B. Cooper, W.W. Chin, Anger and flaming in computer-mediated
    negotiation among strangers, Decis. Support. Syst. 46 (3) (2009) 660–672.
    [34] M.A. Jones, K.E. Reynolds, D.L. Mothersbaugh, S.E. Beatty, The positive and negative effects of switching costs on relational outcomes, J. Serv. Res. 9 (4) (2007)
    335–355.
    [35] M. Kandaurova, S.H.M. Lee, The effects of virtual reality (VR) on charitable giving:
    the role of empathy, guilt, responsibility, and social exclusion, J. Bus. Res. 100
    (2019) 571–580.
    [36] J. Kim, P. Gupta, Emotional expressions in online user reviews: how they influence
    consumers’ product evaluations, J. Bus. Res. 65 (7) (2012) 985–992.
    [37] R.A. King, P. Racherla, V.D. Bush, What we know and don’t know about online
    word-of-mouth: a review and synthesis of the literature, J. Interact. Mark. 28 (3)
    (2014) 167–183.
    [38] H.S. Krishnan, R.W. Olshavsky, The Dual Role of Emotions in Consumer
    Satisfaction/Dissatisfaction, ACR North American Advances, 1995.
    [39] S.S. Kulkarni, Uday M. Apte, N.E. Evangelopoulos, The use of latent semantic
    analysis in operations management research, Decis. Sci. 45 (5) (2014) 971–994.
    [40] H. Kuokkanen, W. Sun, Companies, meet ethical consumers: strategic CSR management to impact consumer choice, Journal of Business Ethics (2019) In Press.
    [41] R. Ladhari, N. Souiden, B. Dufour, The role of emotions in utilitarian service settings: the effects of emotional satisfaction on product perception and behavioral
    intentions, J. Retail. Consum. Serv. 34 (2017) 10–18.
    [42] C.H. Lee, D.A. Cranage, Toward understanding consumer processing of negative
    online word-of-mouth communication: the roles of opinion consensus and organizational response strategies, Journal of Hospitality & Tourism Research 38 (3)
    (2014) 330–360.
    [43] M. Lee, M. Jeong, J. Lee, Roles of negative emotions in customers’ perceived
    helpfulness of hotel reviews on a user-generated review website, Int. J. Contemp.
    Hosp. Manag. 29 (2) (2017) 762–783.
    [44] Y.K. Lee, C.K. Lee, S.K. Lee, B.J. Babin, Festivalscapes and patrons’ emotions, satisfaction, and loyalty, J. Bus. Res. 61 (1) (2008) 56–64.
    [45] Q. Li, X. Guan, T. Shi, W. Jiao, Green product design with competition and fairness
    concerns in the circular economy era, Int. J. Prod. Res. 58 (1) (2020) 165–179.
    [46] Y.S. Lii, E. Sy, Internet differential pricing: effects on consumer price perception,
    emotions, and behavioral responses, Comput. Hum. Behav. 25 (3) (2009) 770–777.
    [47] Q. Liu, S. Shum, Pricing and capacity rationing with customer disappointment
    aversion, Prod. Oper. Manag. 22 (5) (2013) 1269–1286.
    [48] Y. Liu, C. Jiang, H. Zhao, Assessing product competitive advantages from the perspective of customers by mining user-generated content on social media, Decis.
    Support. Syst. 123 (2019) 113079.
    [49] N. López-Mosquera, M. Sánchez, The influence of personal values in the economicuse valuation of peri-urban green spaces: an application of the means-end chain
    theory, Tour. Manag. 32 (4) (2011) 875–889.
    [50] M.S.I. Malik, A. Hussain, Helpfulness of product reviews as a function of discrete
    positive and negative emotions, Comput. Hum. Behav. 73 (2017) 290–302.
    [51] E.C. Malthouse, M. Haenlein, B. Skiera, E. Wege, M. Zhang, Managing customer
    relationships in the social media era: introducing the social CRM house, J. Interact.
    Mark. 27 (4) (2013) 270–280.
    [52] C. Mathwick, J. Mosteller, Online reviewer engagement: a typology based on reviewer motivations, J. Serv. Res. 20 (2) (2017) 204–218.
    [53] J.R. McColl-Kennedy, P.G. Patterson, A.K. Smith, M.K. Brady, Customer rage episodes: emotions, expressions and behaviors, J. Retail. 85 (2) (2009) 222–237.
    [54] W.U. Meyer, R. Reisenzein, A. Schützwohl, Toward a process analysis of emotions:
    the case of surprise, Motiv. Emot. 21 (3) (1997) 251–274.
    [55] M. Miele, V. Parisi, Consumer concerns about animal welfare and food choice,
    X. Xu Decision Support Systems xxx (xxxx) xxxx
    11
    Italian Report on Laddering Interviews, 2000.
    [56] T.L. Ngo-Ye, A.P. Sinha, The influence of reviewer engagement characteristics on
    online review helpfulness: a text regression model, Decis. Support. Syst. 61 (2014)
    47–58.
    [57] M. Niepel, U. Rudolph, A. Schützwohl, W.U. Meyer, Temporal characteristics of the
    surprise reaction induced by schema-discrepant visual and auditory events, Cognit.
    Emot. 8 (5) (1994) 433–452.
    [58] P.U. Nyer, M. Gopinath, Effects of complaining versus negative word of mouth on
    subsequent changes in satisfaction: the role of public commitment, Psychol. Mark.
    22 (12) (2005) 937–953.
    [59] R.L. Oliver, A cognitive model of the antecedents and consequences of satisfaction
    decisions, J. Mark. Res. 17 (4) (1980) 460–469.
    [60] J.C. Olson, T.J. Reynolds, Understanding consumers’ cognitive structures: implications for advertising strategy, Advertising and Consumer Psychology 1 (1983)
    77–90.
    [61] D.H. Park, J. Lee, eWOM overload and its effect on consumer behavioral intention
    depending on consumer involvement, Electron. Commer. Res. Appl. 7 (4) (2008)
    386–398.
    [62] S. Park, J.L. Nicolau, Asymmetric effects of online consumer reviews, Ann. Tour.
    Res. 50 (2015) 67–83.
    [63] J. Previte, R. Russell-Bennett, R. Mulcahy, C. Hartel, The role of emotional value for
    reading and giving eWOM in altruistic services, J. Bus. Res. 99 (2019) 157–166.
    [64] A.T. Purcell, Abstract and specific physical attributes and the experience of landscape, J. Environ. Manag. 34 (3) (1992) 159–177.
    [65] T. Reimer, M. Benkenstein, Not just for the recommender: how eWOM incentives
    influence the recommendation audience, J. Bus. Res. 86 (2018) 11–21.
    [66] T.J. Reynolds, J. Gutman, Laddering theory, method, analysis, and interpretation, J.
    Advert. Res. 28 (1) (1988) 11–31.
    [67] T.J. Reynolds, J.C. Olson, Understanding Consumer Decision Making: The MeansEnd Approach to Marketing and Advertising Strategy, Psychology Press, 2001.
    [68] C. Ruiz-Mafe, K. Chatzipanagiotou, R. Curras-Perez, The role of emotions and
    conflicting online reviews on consumers’ purchase intentions, J. Bus. Res. 89 (2018)
    336–344.
    [69] M. Salehan, D.J. Kim, Predicting the performance of online consumer reviews: a
    sentiment mining approach to big data analytics, Decis. Support. Syst. 81 (2016)
    30–40.
    [70] C.M. Sashi, Customer engagement, buyer-seller relationships, and social media,
    Manag. Decis. 50 (2) (2012) 253–272.
    [71] Segran, E. (2018). Inside the $2.6 billion subscription box wars. Accessed from
    https://www.fastcompany.com/90248232/inside-the-2-6-billion-subscription-boxwars. Accessed on May 2, 2020.
    [72] E.A. Selby, A. Kranzler, E. Panza, K.B. Fehling, Bidirectional-compounding effects of
    rumination and negative emotion in predicting impulsive behavior: implications for
    emotional cascades, J. Pers. 84 (2) (2016) 139–153.
    [73] A. Sidorova, N. Evangelopoulos, J.S. Valacich, T. Ramakrishnan, Uncovering the
    intellectual core of the information systems discipline, MIS Q. 32 (3) (2008)
    467–482.
    [74] N. Stephens, K.P. Gwinner, Why don’t some people complain? A cognitive-emotive
    process model of consumer complaint behavior, J. Acad. Mark. Sci. 26 (3) (1998)
    172–189.
    [75] Y. Sun, X. Dong, S. McIntyre, Motivation of user-generated content: social connectedness moderates the effects of monetary rewards, Mark. Sci. 36 (3) (2017)
    329–337.
    [77] T. Suwelack, J. Hogreve, W.D. Hoyer, Understanding money-back guarantees:
    cognitive, affective, and behavioral outcomes, J. Retail. 87 (4) (2011) 462–478.
    [78] R. Sylvester, 30 Surprising Subscription Box Ideas, Accessed from, 2019. https://
    www.realsimple.com/holidays-entertaining/gifts/gift-of-the-month.
    [79] R. Terpend, B.B. Tyler, D.R. Krause, R.B. Handfield, Buyer–supplier relationships:
    derived value over two decades, J. Supply Chain Manag. 44 (2) (2008) 28–55.
    [80] R. Ullah, N. Amblee, W. Kim, H. Lee, From valence to emotions: exploring the
    distribution of emotions in online product reviews, Decis. Support. Syst. 81 (2016)
    41–53.
    [81] T. Verhagen, A. Nauta, F. Feldberg, Negative online word-of-mouth: Behavioral
    indicator or emotional release? Comput. Hum. Behav. 29 (4) (2013) 1430–1440.
    [82] Y.J. Wang, M.S. Minor, J. Wei, Aesthetics and the online shopping environment:
    understanding consumer responses, J. Retail. 87 (1) (2011) 46–58.
    [83] Y. Wang, B.T. Hazen, Consumer product knowledge and intention to purchase remanufactured products, Int. J. Prod. Econ. 181 (2016) 460–469.
    [84] R.P. Weber, Basic content analysis, Sage University Series on Quantitative
    Applications in the Social Sciences, Sage, Beverly Hills, CA, and London, 1985, pp.
    7–49.
    [85] H. Woo, B. Ramkumar, Who seeks a surprise box? Predictors of consumers’ use of
    fashion and beauty subscription-based online services (SOS), J. Retail. Consum.
    Serv. 41 (2018) 121–130.
    [86] Q. Xu, S. Gregor, Q. Shen, Q. Ma, W. Zhang, A. Riaz, The power of emotions in
    online decision making: a study of seller reputation using fMRI, Decis. Support.
    Syst. 131 (2020) 113247.
    [87] X. Xu, How do consumers in the sharing economy value sharing? Evidence from
    online reviews, Decis. Support. Syst. 128 (2020) 113162.
    [88] X. Xu, C. Lee, Utilizing the platform economy effect through EWOM: does the
    platform matter? Int. J. Prod. Econ. 227 (2020) 107663.
    [89] Z. Yan, T. Wang, Y. Chen, H. Zhang, Knowledge sharing in online health communities: a social exchange theory perspective, Inf. Manag. 53 (5) (2016) 643–653.
    [90] D. Yin, S.D. Bond, H. Zhang, Anxious or angry? Effects of discrete emotions on the
    perceived helpfulness of online reviews, MIS Q. 38 (2) (2014) 539–560.
    [91] K.H. Yoo, U. Gretzel, What motivates consumers to write online travel reviews?
    Information Technology & Tourism 10 (4) (2008) 283–295.
    [92] S. Young, B. Feigin, Using the benefit chain for improved strategy formulation, J.
    Mark. 39 (3) (1975) 72–74.
    [93] W. Zhang, H. Xu, W. Wan, Weakness finder: find product weakness from Chinese
    reviews by using aspects based sentiment analysis, Expert Syst. Appl. 39 (11) (2012)
    10283–10291.
    [94] Z. Zhang, C. Guo, P. Goes, Product comparison networks for competitive analysis of
    online word-of-mouth, ACM Transactions on Management Information Systems
    (TMIS) 3 (4) (2013) 1–22.

Influence of consumer reviews on online purchasing decisions in older and younger adults

Helversen B, Abramczuk K, Kopeć W, Nielek R, (2018), Influence of consumer reviews on online purchasing decisions in older and younger adults, Decision Support Systems

Volume 113, September 2018, Pages 1-10

https://www.sciencedirect.com/science/article/pii/S0167923618300861

Mots clés : Prise de décision des consommateurs, Adultes, Évaluations des consommateurs, Avis des consommateurs, Preuves anecdotiques

Résumé : Cet article montre que les attributs des produits, les notes moyennes des consommateurs et les avis de consommateurs positifs ou négatifs riches en effets ont influencé les décisions d’achat en ligne hypothétiques des jeunes et des personnes âgées. Conformément à des recherches antérieures, on voit que les jeunes adultes utilisaient les trois types d’information : ils préféraient clairement des produits avec de meilleurs attributs et des notes moyennes des consommateurs plus élevées. Si faire un choix était difficile car il impliquait des compromis entre les attributs du produit, la plupart des jeunes adultes ont choisi le produit le mieux noté. Cependant, la préférence pour le produit mieux noté pourrait être annulée par un seul examen négatif ou positif riche en effets. Les personnes âgées ont été fortement influencées par un seul examen négatif riche en effets et ont également pris en considération les attributs du produit; cependant, ils n’ont pas pris en compte les notes moyennes des consommateurs ou les avis positifs uniques riches en effets. Ces résultats suggèrent que les personnes âgées ne considèrent pas les informations agrégées des consommateurs et les avis positifs se concentrant sur les expériences positives avec le produit, mais sont facilement influencées par les avis faisant état d’expériences négatives.

Grandes lignes :

  • Sont étudiées les intentions d’achat en ligne chez les personnes âgées et les étudiants.
  • Est étudié l’impact des notes moyennes des consommateurs et des critiques émotionnelles uniques.
  • Les étudiants mais pas les adultes plus âgés ont été fortement influencés par les notes moyennes des consommateurs.
  • Chez les étudiants, les avis positifs et négatifs ont annulé l’effet des notes moyennes.
  • Les personnes âgées ont été influencées par des critiques individuelles négatives, mais pas par des critiques positives.


[1] J.W. Lian, D.C. Yen, Online shopping drivers and barriers for older adults: age and
gender differences, Computers in Human Behavior 37 (2014) 133–143.
[2] M. Law, M. Ng, Age and gender differences: understanding mature online users with
the online purchase intention model, Journal of Global Scholars of Marketing
Science 26 (3) (2016) 248–269.
[3] Y.J. Ma, H. Kim, H.-h. Lee, Effect of individual differences on online review perception and usage behavior: the need for cognitive closure and demographics,
Journal of the Korean Society of Clothing and Textiles 36 (12) (2012) 1270–1284.
[4] P.Y. Chen, S.y. Wu, J. Yoon, The impact of online recommendations and consumer
feedback on sales, ICIS 2004 Proceedings, 2004, p. 58.
[5] K. Floyd, R. Freling, S. Alhoqail, H.Y. Cho, T. Freling, How online product reviews
affect retail sales: a meta-analysis, Journal of Retailing 90 (2) (2014) 217–232,
https://doi.org/10.1016/j.jretai.2014.04.004.
[6] R.A. King, P. Racherla, V.D. Bush, What we know and don’t know about online
word-of-mouth: a review and synthesis of the literature, Journal of Interactive
Marketing 28 (3) (2014) 167–183.
[7] N. Purnawirawan, M. Eisend, P. De Pelsmacker, N. Dens, A meta-analytic investigation of the role of valence in online reviews, Journal of Interactive Marketing
31 (2015) 17–27, https://doi.org/10.1016/j.intmar.2015.05.001.
[8] Y. Liu, Word of mouth for movies: its dynamics and impact on box office revenue,
Journal of Marketing 70 (3) (2006) 74–89.
[9] E. Maslowska, E.C. Malthouse, V. Viswanathan, Do customer reviews drive purchase decisions? The moderating roles of review exposure and price, Decision
Support Systems 98 (2017) 1–9.
[10] S. Karimi, F. Wang, Online review helpfulness: impact of reviewer profile image,
Decision Support Systems 96 (2017) 39–48.
[11] J. Lee, D.h. Park, I. Han, The effect of negative online consumer reviews on product
attitude: an information processing view, Electronic Commerce Research and
Applications 7 (2008) 341–352.
[12] S. Sen, D. Lerman, Why are you telling me this? An examination into negative
consumer reviews on the web, Journal of Interactive Marketing 21 (4) (2007)
76–94.
[13] C. Betsch, N. Haase, F. Renkewitz, P. Schmid, The narrative bias revisited: what
drives the biasing influence of narrative information on risk perceptions? Judgment
and Decision Making 10 (3) (2015) 241–264.
[14] P. Rozin, E.B. Royzman, Negativity bias, negativity dominance, and contagion,
Personality and Social Psychology Review 5 (4) (2001) 296–320.
[15] P.F. Wu, In search of negativity bias: an empirical study of perceived helpfulness of
online reviews, Psychology & Marketing 30 (11) (2013) 971–984.
[16] BrightLocal, Local Consumer Review Survey 2016, (2016) https://www.brightlocal.
com/learn/local-consumer-review-survey/.
[17] S. Hong, H.S. Park, Computer-mediated persuasion in online reviews: statistical
versus narrative evidence, Computers in Human Behavior 28 (3) (2012) 906–919.
[18] M. Ziegele, M. Weber, Example, please! Comparing the effects of single customer
reviews and aggregate review scores on online shoppers’ product evaluations,
Journal of Consumer Behaviour 14 (2015) 103–114.
[19] C. Betsch, C. Ulshöfer, F. Renkewitz, T. Betsch, The influence of narrative v. statistical information on perceiving vaccination risks, Medical Decision Making 31 (5)
(2011) 742–753, https://doi.org/10.1177/0272989X11400419.
[20] P.A. Ubel, C. Jepson, J. Baron, The inclusion of patient testimonials in decision aids,
Medical Decision Making 21 (1) (2001) 60–68.
[21] A. Winterbottom, H.L. Bekker, M. Conner, A. Mooney, Does narrative information
bias individual’s decision making? A systematic review, Social Science and
Medicine 67 (12) (2008) 2079–2088.
[23] P.B. Baltes, U.M. Staudinger, U. Lindenberger, Lifespan psychology: theory and
application to intellectual functioning. Annual Review of Psychology 50 (1999)
471–507, https://doi.org/10.1146/annurev.psych.50.1.471.
[24] L.L. Carstensen, The influence of a sense of time on human development, Science
312 (5782) (2006) 1913–1915.
[25] E. Peters, T.M. Hess, D. Västfjäll, C. Auman, Adult age differences in dual information processes: implications for the role of affective and deliberative processes
in older adults’ decision making, Perspectives on Psychological Science 2 (1) (2007)
1–23.
[26] R. Mata, T. Pachur, B. von Helversen, R. Hertwig, J. Rieskamp, L. Schooler,
Ecological rationality: a framework for understanding and aiding the aging decision
maker, Frontiers in Decision Neuroscience 6 (Article 19) (2012) 1–6, https://doi.
org/10.3389/fnins.2012.00019.
[27] W.A. Rogers, A.J. Stronge, A.D. Fisk, Technology and Aging, Reviews of human
factors and ergonomics 1 (1) (2005) 130–171.
[28] T.A. Salthouse, Mental exercise and mental aging: evaluating the validity of the “use
it or lose it” hypothesis, Perspectives on Psychological Science 1 (1) (2006) 68–87.
[29] T. Salthouse, Consequences of age-related cognitive declines, Annual Review of
Psychology 63 (2012) 201–226.
[30] M.L. Finucane, C.K. Mertz, P. Slovic, E.S. Schmidt, Task complexity and older
adults’ decision-making competence, Psychology and Aging 20 (1) (2005) 71–84.
[31] R. Frey, R. Mata, R. Hertwig, The role of cognitive abilities in decisions from experience: age differences emerge as a function of choice set size, Cognition 142
(2015) 60–80, https://doi.org/10.1016/j.cognition.2015.05.004.
[32] R. Mata, L. Nunes, When less is enough: cognitive aging, information search, and
decision quality in consumer choice, Psychology and Aging 25 (2010) 289–298,
https://doi.org/10.1037/a0017927.
[33] R. Mata, L.J. Schooler, J. Rieskamp, The aging decision maker: cognitive aging and
the adaptive selection of decision strategies, Psychology & Aging 22 (2007)
101037/0882–7974224796.
[34] B. von Helversen, R. Mata, Losing a dime with a satisfied mind: positive affect
predicts less search in sequential decision making, Psychology and Aging 27 (4)
(2012) 825–839, https://doi.org/10.1037/a0027845.
[35] G. Gigerenzer, P.M. Toddthe ABC Research Group, Simple Heuristics That Make Us
Smart, Oxford University Press, 1999.
[36] R. Mata, B. von Helversen, J. Rieskamp, Learning to choose: cognitive aging and
strategy selection learning in decision making, Psychology and Aging 25 (2) (2010)
299–309, https://doi.org/10.1037/a0018923.
[37] J.A. Mikels, C.E. Löckenhoff, S.J. Maglio, L.L. Carstensen, M.K. Goldstein,
A. Garber, Following your heart or your head: focusing on emotions versus information differentially influences the decisions of younger and older adults,
Journal of Experimental Psychology: Applied 16 (1) (2010) 87.
[38] C.A. Cole, S.K. Balasubramanian, Age differences in consumers’ search for information: public policy implications, Journal of Consumer Research 20 (1993)
157–169.
[39] C.M. Schaninger, D. Sciglimpaglia, The influence of cognitive personality traits and
demographics on consumer information acquisition, Journal of Consumer Research
8 (2) (1981) 208–216.
[40] R. Lambert-Pandraud, G. Laurent, E. Lapersonne, Repeat purchasing of new automobiles by older consumers: empirical evidence and interpretations, Journal of
Marketing 69 (2) (2005) 97–113.
[41] S.M. Carpenter, C. Yoon, Aging and consumer decision making, Annals of the New
York Academy of Sciences 1235 (1) (2011) 1–12.
[42] Q. Ma, K. Chen, A.H.S. Chan, P.L. Teh, Acceptance of ICTs by older adults: a review
of recent studies, International Conference on Human Aspects of IT for the Aged
Population, Springer, 2015, pp. 239–249.
[43] A. Ahmed, A.S. Sathish, Determinants of online shopping adoption: meta analysis
and review, European Journal of Social Sciences 49 (4) (2015) 483–510.
[44] G. Cohen, Language comprehension in old age, Cognitive Psychology 11 (4) (1979)
412–429.
[45] R. De Beni, E. Borella, B. Carretti, Reading comprehension in aging: the role of
working memory and metacomprehension, Aging, Neuropsychology, and Cognition
14 (2) (2007) 189–212, https://doi.org/10.1080/13825580500229213.
[46] L.H. Phillips, R.D. MacLean, R. Allen, Age and the understanding of emotions
neuropsychological and sociocognitive perspectives, The Journals of Gerontology.
Series B, Psychological Sciences and Social Sciences 57 (6) (2002) 526–P530.
[47] L.L. Carstensen, Motivation for social contact across the life span: a theory of socioemotional selectivity, Nebraska symposium on motivation, vol. 40, 1993, pp.
209–254.
[48] S.T. Charles, L.L. Carstensen, Social and emotional aging, Annual Review of
Psychology 61 (2010) 383–409.
[49] A.E. Reed, L. Chan, J.A. Mikels, Meta-analysis of the age-related positivity effect:
age differences in preferences for positive over negative information, Psychology
and Aging 29 (1) (2014) 1–15.
[50] H.H. Fung, L.L. Carstensen, Sending memorable messages to the old: age differences
in preferences and memory for advertisements, Journal of Personality and Social
Psychology 85 (1) (2003) 163–178.
[51] M.K. Depping, A.M. Freund, Normal aging and decision making: the role of motivation, Human Development 54 (6) (2011) 349–367.
[52] M.J. Frank, L. Kong, Learning to avoid in older age, Psychology and Aging 23 (2)
(2008) 392–398, https://doi.org/10.1037/0882-7974.23.2.392.
[53] D. Hämmerer, S.C. Li, V. Müller, U. Lindenberger, Life span differences in electrophysiological correlates of monitoring gains and losses during probabilistic reinforcement learning, Journal of Cognitive Neuroscience 23 (3) (2011) 579–592.
[54] B. Eppinger, N.W. Schuck, L.E. Nystrom, J.D. Cohen, Reduced striatal responses to
B. von Helversen et al. Decision Support Systems 113 (2018) 1–10
9
reward prediction errors in older compared with younger adults, Journal of
Neuroscience 33 (24) (2013) 9905–9912.
[55] A. Mantonakis, P. Rodero, I. Lesschaeve, R. Hastie, Order in choice: effects of serial
position on preferences, Psychological Science 20 (11) (2009) 1309–1312, https://
doi.org/10.1111/j.1467-9280.2009.02453.x.
[56] C. Mogilner, B. Shiv, S.S. Iyengar, Eternal quest for the best: sequential (vs. simultaneous) option presentation undermines choice commitment, Journal of
Consumer Research 39 (6) (2013) 1300–1312, https://doi.org/10.1086/668534.
[57] A. Dieckmann, K. Dippold, Compensatory versus noncompensatory models for
predicting consumer preferences, Judgment and Decision Making 4 (3) (2009)
200–213.
[58] W. Kopeć, K. Skorupska, A. Jaskulska, K. Abramczuk, R. Nielek, A. Wierzbicki,
LivingLab PJAIT: towards better urban participation of seniors, Proceedings of the
International Conference on Web Intelligence, ACM, 2017, pp. 1085–1092.
[59] W. Kopeć, B. Balcerzak, R. Nielek, G. Kowalik, A. Wierzbicki, F. Casati, Older adults
and hackathons: a qualitative study, Empirical Software Engineering (2017) 1–36.
[60] W. Kopeć, K. Abramczuk, B. Balcerzak, M. Juźwin, K. Gniadzik, G. Kowalik,
R. Nielek, A location-based game for two generations: teaching mobile technology
to the elderly with the support of young volunteers, eHealth 360, Springer, 2017,
pp. 84–91.
[61] D. Godes, D. Mayzlin, Using online conversations to study word-of-mouth communication, Marketing Science 23 (4) (2004) 545–560.
[62] P. Resnick, R. Zeckhauser, J. Swanson, K. Lockwood, The value of reputation on
eBay: a controlled experiment, Experimental Economics 9 (2) (2006) 79–101.
[63] H. Singmann, B. Bolker, J. Westfall, F. Aust, afex: Analysis of Factorial Experiments,
(2016) https://CRAN.R-project.org/package=afex r package version 0.16-1.
[64] R.V. Lenth, Least-squares means: the R package lsmeans, Journal of Statistical
Software 69 (1) (2016) 1–33, https://doi.org/10.18637/jss.v069.i01.
[65] F. Schieber, Human factors and aging: identifying and compensating for age-related
deficits in sensory and cognitive function, Impact of technology on successful aging,
2003, pp. 42–84.
[66] L.H. Phillips, R. Allen, Adult aging and the perceived intensity of emotions in faces
and stories, Aging Clinical and Experimental Research 16 (3) (2004) 190–199.
[67] N. Hu, N.S. Koh, S.K. Reddy, Ratings lead you to the product, reviews help you
clinch it? The mediating role of online review sentiments on product sales, Decision
Support Systems 57 (2014) 42–53.

Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions

Mirtalaie M, Hussain O, Chang E, Hussain F, (2018), Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions, Expert Systems with Applications, Volume 114, 30 December 2018, Pages 267-288

https://www.sciencedirect.com/science/article/abs/pii/S0957417418304718

Mots clés : Analyse des sentiments basé sur les fonctionnalités, Avantages / inconvénients des produits,Force de polarité, Arborescence des produits

Résumé : L’extraction des connaissances sur les sentiments est un domaine de recherche en croissance dans la littérature. Il aide à analyser les opinions des utilisateurs sur différentes entités ou événements, qui peuvent ensuite être utilisées par les analystes à diverses fins. En particulier, l’analyse des sentiments basée sur les fonctionnalités est l’un des domaines de recherche difficiles qui analyse les opinions des utilisateurs sur les différentes fonctionnalités d’un produit ou d’un service. Parmi les trois formats pour les évaluations de produits, notre objectif dans cet article se limite à l’analyse du type avantages / inconvénients. En raison de la nature des avis pour / contre, ils sont généralement concis et suivent une structure différente des autres types d’avis. Par conséquent, des techniques spécialisées sont nécessaires pour analyser ces avis et extraire les caractéristiques des produits discutés par les clients ainsi que leurs attitudes personnelles

Grandes lignes :

  • Extraction de fonctionnalités à l’aide de règles syntaxique à partir des avis pour / contre.
  • Déterminer la polarité de l’opinion en fonction de sa force émotionnelle.
  • Comparer les résultats avec des approches de pointe dans différentes tâches.


Agarwal, B., Mittal, N., Bansal, P., & Garg, S. (2015). Sentiment analysis using
common-sense and context information. Computational Intelligence and Neuroscience, 2015, 9 Article ID 715730. doi:10.1155/2015/715730.
Agrawal, S., & Siddiqui, T. J. (2009). Using syntactic and contextual information for
sentiment polarity analysis. In Proceedings of the 2nd international conference on
interaction sciences information technology, culture and human – ICIS ’09 (pp. 620–
623). doi:10.1145/1655925.1656037.
Alghunaim, A., Mohtarami, M., Cyphers, S., & Glass, J. (2015). A vector space approach for aspect based sentiment analysis. In In Proceedings of NAACL-HLT
(pp. 116–122).
Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing
deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236–246. doi:10.1016/j.eswa.2017.02.
002.
Bagheri, A., Saraee, M., & De Jong, F. (2013). Care more about customers: Unsupervised domain-independent aspect detection for sentiment analysis of customer reviews. Knowledge-Based Systems, 52, 201–213. doi:10.1016/j.knosys.2013.
08.011.
Benamara, F., Irit, S., Cesarano, C., Federico, N., & Reforgiato, D. (2007).
Sentiment analysis : Adjectives and adverbs are better than adjectives
alone. In In Proc of int conf on weblogs and social media (pp. 1–4).
http://doi.org/citeulike-article-id:9387439.
Bhattacharjee, S., Das, A., Bhattacharya, U., Parui, S. K., & Roy, S. (2015). Sentiment
analysis using cosine similarity measure. In IEEE 2nd international conference on
Recent Trends in Information Systems (ReTIS) (pp. 27–32). doi:10.1109/ReTIS.2015.
7232847.
Bright, D. A. (2017). Using social network analysis to design crime prevention
strategies: A case study of methamphetamine manufacture and trafficking. In
B. LeClerc, & E. U. Savona (Eds.), Crime prevention in the 21st century: Insightful
approaches for crime prevention initiatives (pp. 143–164). Cham: Springer International Publishing. doi:10.1007/978-3-319-27793-6_11.
Cambria, E., Poria, S., Gelbukh, A., & Nacional, I. P. (2017). Sentiment analysis is a
big suitcase. IEEE Intelligent Systems, 74–80. doi:10.1109/MIS.2017.4531228.
Carenini, G., Ng, R. T., & Zwart, E. (2005). Extracting knowledge from evaluative text.
In K-CAP ’05: Proceedings of the 3rd international conference on Knowledge capture
(pp. 11–18). doi:10.1145/1088622.1088626.
Carter, D., & Inkpen, D. (2015). Inferring aspect-specific opinion structure in product reviews using co-training. In 16th international conference in computational linguistics and intelligent text processing: 9042 (pp. 225–240). doi:10.1007/
978-3-642-28601-8.
Chen, D., & Manning, C. (2014). A Fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 740–750). doi:10.3115/v1/D14-1082.
Chen, Y. Y., Ferrer, X., Wiratunga, N., & Plaza, E. (2015). Aspect selection for social
recommender systems. In E. Hüllermeier, & M. Minor (Eds.). In Case-based reasoning research and development. ICCBR 2015. Lecture Notes in Computer Science:

  1. Cham: Springer.
    Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of
    Big Data, 2, 5. doi:10.1186/s40537-015-0015-2.
    Ganapathibhotla, M., & Liu, B. (2008). Mining opinions in comparative sentences.
    In Proceedings of the 22nd international conference on computational linguistics –
    COLING ’08 (pp. 241–248). 1(August). doi:10.3115/1599081.1599112.
    Ganeshbhai, S. Y., & Shah, B. K. (2015). Feature based opinion mining: A survey. In
    Souvenir of the 2015 IEEE international advance computing conference, IACC 2015
    (pp. 919–923). doi:10.1109/IADCC.2015.7154839.
    García-Pablos, A., Cuadros, M., & Rigau, G. (2015). Unsupervised word polarity tagging by exploiting continuous word representations. Procesamiento de Lenguaje
    Natural, 55, 127–134.
    Goldberg, A. B., Fillmore, N., Andrzejewski, D., Xu, Z., Gibson, B., & Zhu, X. (2009).
    May all your wishes come true : A study of wishes and how to recognize them.
    In Proceedings of human language technologies: The 2009 annual conference of the
    north american chapter of the association for computational linguistics on – NAACL
    ’09 (pp. 263–271). doi:10.3115/1620754.1620793.
    Hogenboom, A., Van Iterson, P., Heerschop, B., Frasincar, F., & Kaymak, U. (2011).
    Determining negation scope and strength in sentiment analysis. In Conference proceedings – IEEE international conference on systems, man and cybernetics
    (pp. 2589–2594). doi:10.1109/ICSMC.2011.6084066.
    Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. In 19th
    national conference on artifical intelligence (pp. 755–760). doi:10.1145/1014052.
    1014073.
    Huang, J., Etzioni, O., Zettlemoyer, L., Clark, K., & Lee, C. (2012). Revminer: An extractive interface for navigating reviews on a smartphone. In Proceedings of the
    25th annual ACM symposium on user interface software and technology (pp. 3–12).
    doi:10.1145/2380116.2380120.
    Jeyapriya, A., & Selvi, C. S. K. (2015). Extracting aspects and mining opinions in product reviews using supervised learning algorithm. In 2nd international conference on electronics and communication systems, ICECS 2015 (pp. 548–552). IEEE.
    doi:10.1109/ecs.2015.7124967.
    Jhamtani, H., Chhaya, N., Karwa, S., Varshney, D., Kedia, D., & Gupta, V. (2015). Identifying suggestions for improvement of product features from online product reviews. In T.-Y. Liu, C. N. Scollon, & W. Zhu (Eds.), Social informatics (pp. 112–119).
    Switzerland: Cham: Springer International Publishing.
    Kang, Y., & Zhou, L. (2016). RubE: Rule-based methods for extracting product features from online consumer reviews. Information & Management, 54(2). doi:10.
    1016/j.im.2016.05.007.
    Kim, S.-M., & Hovy, E. (2006). Automatic identification of pro and con reasons in online reviews. In Proceedings of the COLING/ACL on main conference poster sessions
    (pp. 483–490). doi:10.3115/1273073.1273136.
    Lau, R. Y. K., Li, C., & Liao, S. S. Y. (2014). Social analytics: Learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decision Support Systems,
    65(2014), 80–94. doi:10.1016/j.dss.2014.05.005.
    Li, Y. M., Chen, H. M., Liou, J. H., & Lin, L. F. (2014). Creating social intelligence for
    product portfolio design. Decision Support Systems, 66, 123–134. doi:10.1016/j.
    dss.2014.06.013.
    Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers.
    doi:10.2200/S00416ED1V01Y201204HLT016.
    Liu, B. (2015). Sentiment analysis: mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139084789.
    Liu, B., & Hu, M. (2005). Opinion observer: analyzing and comparing opinions on
    the web. In Proceedings of the 14th international World Wide Web conference
    (WWW-2005).
    Liu, J., & Seneff, S. (2009). Review sentiment scoring via a parse-and-paraphrase
    paradigm. In Proceedings of the 2009 conference on empirical methods in natural language processing volume 1 – EMNLP ’09: 1 (p. 161). doi:10.3115/1699510.
    1699532.
    Liu, Q., Gao, Z., Liu, B., & Zhang, Y. (2015). Automated rule selection for aspect extraction in opinion mining. In Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) (pp. 1291–1297).
    Lobeck, A. C. (2000). Discovering grammar: An introduction to english sentence structure. Oxford University Press.
    Manek, A. S., Shenoy, P. D., Mohan, M. C., & Venugopal, K. R. (2016). Aspect
    term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web. doi:10.1007/
    s11280-015-0381-x.
    Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).
    The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd
    annual meeting of the association for computational linguistics: system demonstrations (pp. 55–60). doi:10.3115/v1/P14-5010.
    Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the
    ACM, 38(11), 39–41.
    Mirtalaie, M. A., Hussain, O. K., & Chang, E. (2016). FEATURE : New product development using feature- drift based framework for unique aspect recommendation.
    IEEE international conference on e-business engineering. doi:10.1109/ICEBE.2016.
    43.
    Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2017a). A decision support framework for identifying novel ideas in new product development from
    cross-domain analysis. Information Systems, 69, 59–80. doi:10.1016/j.is.2017.04.
    003.
    Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2017b). Sentiment analysis of specific product’s features using product tree for application in new product development. In Advances in Intelligent Networking and Collaborative Systems
    (INCoS 2017) (pp. 82–95). Springer.
    Mukherjee, S., & Joshi, S. (2013). Sentiment aggregation using conceptnet ontology. In Proceedings of the sixth international joint conference on natural language processing (pp. 570–578). (October)Retrieved from. http://www.aclweb.
    org/anthology/I13-1065 .
    Nielsen, F. A. ˚ (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In CEUR workshop proceedings: 718 (pp. 93–98). doi:10.1016/j.
    knosys.2015.06.015.
    Norman, B., & Ann, M. J. (2011). Mapping and leveraging influencers in social media to shape corporate brand perceptions. Corporate Communications: An International Journal, 16(3), 184–191. doi:10.1108/13563281111156853.
    Pasierbinska-Wilson, Z.. Will social data insights kill the marketing focus group?
    Retrieved 2 February 2018, from https://www.martechadvisor.com/articles/
    bi-ci-amp-data-visualization/will-social-data-insights-kill-the-marketing-focus
    -group/.
    Poria, S., Cambria, E., Ku, L.-W., Gui, C., & Gelbukh, A. (2014). A rule-based approach
    to aspect extraction from product reviews. Workshop on Natural Language Processing for Social Media (SocialNLP), 28–37.
    Qiu, G., Liu, B., Bu, J., & Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37, 9–27. doi:10.
    1162/coli_a_00034.
    Ramanand, J., Bhavsar, K., & Pedanekar, N. (2010). Wishful thinking – Finding suggestions and “buy” wishes from product reviews. In Proceedings of the NAACL HLT
    2010 workshop on computational approaches to analysis and generation of emotion
    in text (pp. 54–61).
    Rana, T. A., & Cheah, Y. N. (2017). A two-fold rule-based model for aspect extraction.
    Expert Systems with Applications, 89, 273–285. doi:10.1016/j.eswa.2017.07.047.
    288 M.A. Mirtalaie et al. / Expert Systems With Applications 114 (2018) 267–288
    Samha, A. K., Li, Y., & Zhang, J. (2015). Aspect – Based opinion mining from product
    reviews using conditional random fields. AusDM 2015: The 13th Australasian Data
    Mining Conference. University of Technology.
    Schouten, K., & Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE
    Transactions on Knowledge and Data Engineering, 28(3), 813–830. doi:10.1109/
    TKDE.2015.2485209.
    Suleman, K., & Vechtomova, O. (2015). Discovering aspects of online consumer reviews. Journal of Information Science, 1–15. doi:10.1177/0165551515595742.
    Thelwall, M. (2013). Heart and soul: Sentiment strength detection in the social
    web with sentistrength. Proceedings of the CyberEmotions, 5, 1–14. doi:10.1007/
    978-3-319-43639-5_7.
    Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich partof-speech tagging with a cyclic dependency network. In Proceedings of the
    2003 conference of the North American chapter of the association for computational linguistics on human language technology – NAACL ’03: 1 (pp. 173–180).
    doi:10.3115/1073445.1073478.
    Wang, H., & Wang, W. (2014). Product weakness finder: An opinion-aware
    system through sentiment analysis. Industrial Management & Data Systems,
    114(8), 1301–1320. Retrieved from http://www.emeraldinsight.com/doi/pdfplus/
    10.1108/IMDS-02-2014-0069 .
    Wang, Z., & Bovik, A. C. (2009). Mean squared error: Lot it or leave it? A new look at
    signal fidelity measures. IEEE Signal Processing Magazine, 26(1), 98–117. doi:10.
    1109/MSP.2008.930649.
    Xie, Y., Chen, Z., Cheng, Y., Zhang, K., Agrawal, A., Liao, W.-K., & Choudhary, A. (2013). Detecting and tracking disease outbreaks by mining social media data. In Proceedings of the twenty-third international joint conference on artificial intelligence. AAAI Press.
    Ye, K., Li, L., Guo, M., Qian, Y., & Yuan, H. (2015). Summarizing product aspects from
    massive online review with word representation. Knowledge Science Engineering
    Management, 9403(71572029), 318–323. doi:10.1007/978-3-319-25159-2.
    Yu, J., Zha, Z.-J., Wang, M., & Chua, T.-S. (2011). Aspect ranking: Identifying important product aspects from online consumer reviews. In Proceedings of the 49th
    annual meeting of the association for computational linguistics (pp. 1496–1505).
    doi:10.1109/CC.2013.6488828.
    Zhao, B., Rubinstein, B. I. P., Gemmell, J., & Han, J. (2012). A Bayesian approach to
    discovering truth from conflicting sources for data integration. Vldb, 5(6), 550–
  2. doi:10.14778/2168651.2168656.
    Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. In
    Proceedings of the 15th ACM International conference on information and knowledge management – CIKM ’06 43. doi:10.1145/1183614.1183625

Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products

Sun X, Han M, Feng J, (2019), Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products, Decision Support Systems, Volume 124, September 2019, 113099

https://www.sciencedirect.com/science/article/pii/S0167923619301289

Mots clés : Avis en ligne, Recherche de produits, Découverte de produits, Prédiction de l’utilité

Résumé : La surcharge d’informations rend souvent difficile pour les consommateurs d’identifier les avis de produits en ligne utiles grâce à la fonction traditionnelle de « votes utiles»; par conséquent, il est devenu particulièrement important d’identifier efficacement les avis utiles. En différenciant les produits de recherche des produits d’expérience, cette recherche examine l’impact de différentes mesures de l’information communiquée par les avis sur l’utilité des avis et propose différents seuils de classification pour identifier individuellement l’utilité des avis en ligne pour les produits de recherche et pour les produits d’expérience, respectivement. Toutes les expériences ont été menées à l’aide d’un ensemble de données de JD.com, l’un des plus grands marchés électroniques en ligne en Chine. Nos résultats offrent des lignes directrices pour concevoir différentes normes de classification de l’utilité pour les produits de recherche et pour les produits d’expérience.

Grandes lignes :

  • Les différences entre les produits de recherche et les produits d’expérience modèrent la perception des consommateurs quant à l’utilité des avis.
  • Nous confirmons différents seuils de classification pour les produits de recherche et d’expérience.
  • Amélioration des performances de classification grâce à nos variables et seuils proposés
  • Le nombre d’attributs et la longueur moyenne des attributs mesurent le caractère informatif de l’examen.


[1] N. Archak, A. Ghose, P.G. Ipeirotis, Deriving the pricing power of product features
by mining consumer reviews, Management Science 57 (8) (2011) 1485–1509.
[2] L. Baruh, Z. Cemalcılar, When more is more? The impact of breadth and depth of
information disclosure on attributional confidence about and interpersonal attraction to a social network site profile owner, Cyberpsychology: Journal of
Psychosocial Research on Cyberspace 12 (1) (2018).
[3] A. Benlian, R. Titah, T. Hess, Differential effects of provider recommendations and
consumer reviews in e-commerce transactions: an experimental study, Journal of
Management Information Systems 29 (1) (2012) 237–272.
[4] L.A. Book, S. Tanford, W. Chang, Customer reviews are not always informative: the
impact of effortful versus heuristic processing, Journal of Retailing and Consumer
Services 41 (2018) 272–280.
[5] Q. Cao, W. Duan, Q. Gan, Exploring determinants of voting for the “helpfulness” of
online user reviews: a text mining approach, Decision Support Systems 50 (2)
(2011) 511–521.
[6] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning
algorithms using different performance metrics, Proc. 23rd International
Conference Machine Learning (ICML ’06), 2006, pp. 161–168.
[7] Y. Chi, X. Tang, Y. Lian, X. Dong, Y. Liu, A supernetwork-based online post informative quality evaluation model, Knowledge-Based Systems 168 (2019) 10–24.
[8] A.Y.K. Chua, S. Banerjee, Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth, Journal of the Association for
Information Science and Technology 66 (2) (2015) 354–362.
[9] A.Y.K. Chua, S. Banerjee, Helpfulness of user-generated reviews as a function of
review sentiment, product type and information quality, Computers in Human
Behavior 54 (2016) 547–554.
[10] S.P. Eslami, M. Ghasemaghaei, K. Hassanein, Which online reviews do consumers
find most helpful? A multi-method investigation, Decision Support Systems 113
(2018) 32–42.
[11] R. Filieri, What makes online reviews helpful? A diagnosticity-adoption framework
to explain informational and normative influences in e-WOM, Journal of Business
Research 68 (6) (2015) 1261–1270.
[12] R. Filieri, F. McLeay, B. Tsui, Z. Lin, Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services, Information & Management 55 (2018) 956–970.
[13] B.J. Fogg, J. Marshall, O. Laraki, A. Osipovich, C. Varma, N. Fang, J. Paul,
A. Rangnekar, J. Shon, P. Swani, M. Treinen, What makes web sites credible? A
report on a large quantitative study, Proceedings of the SIGCHI Conference on
Human Factors in Computing, 2001, pp. 61–68.
[14] C. Forman, A. Ghose, B. Wiesenfeld, Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets, Information
Systems Research 19 (3) (2008) 291–313.
[15] A. Ghose, P.G. Ipeirotis, Estimating the helpfulness and economic impact of product
reviews: mining text and reviewer characteristics, IEEE Transactions on Knowledge
and Data Engineering 23 (10) (2011) 1498–1512.
[16] T. Girard, P. Dion, Validating the search, experience, and credence product classification framework, Journal of Business Research 63 (9–10) (2010) 1079–1087.
[17] H. Hong, D. Xu, G.A. Wang, W. Fan, Understanding the determinants of online
review helpfulness: a meta-analytic investigation, Decision Support Systems 102
(2017) 1–11.
[18] Y.K. Hong, P.A. Pavlou, Product fit uncertainty in online markets: nature, effects,
and antecedents, Information Systems Research 25 (2) (2014) 328–344.
[19] Y.-H. Hu, K. Chen, Predicting hotel review helpfulness: the impact of review visibility, and interaction between hotel stars and review ratings, International Journal
of Information Management 36 (6) (2016) 929–944.
[20] A.H. Huang, K. Chen, D.C. Yen, T.P. Tran, A study of factors that contribute to
online review helpfulness, Computers in Human Behavior 48 (2015) 17–27.
[21] A.H. Huang, D.C. Yen, Predicting the helpfulness of online reviews: a replication,
International Journal of Human Computer Interaction 29 (2) (2013) 129–138.
[22] L. Huang, C.-H. Tan, W. Ke, K.-K. Wei, Comprehension and assessment of product
reviews: a review-product congruity proposition, Journal of Management
Information Systems 30 (3) (2013) 311–343.
[23] L. Huang, C.-H. Tan, W. Ke, K.-K. Wei, Do we order product review information
display? How? Information & Management 51 (7) (2014) 883–894.
[24] F.R. Jiménez, N.A. Mendoza, Too popular to ignore: the influence of online reviews
on purchase intentions of search and experience products, Journal of Interactive
Marketing 27 (3) (2013) 226–235.
[25] Q. Jones, G. Ravid, S. Rafaeli, Information overload and the message dynamics of
online interaction spaces: a theoretical model and empirical exploration,
Information Systems Research 15 (2) (2004) 194–210.
X. Sun, et al. Decision Support Systems 124 (2019) 113099
10
[26] Y. Kang, L. Zhou, RubE: rule-based methods for extracting product features from
online consumer reviews, Information & Management 54 (2) (2017) 166–176.
[27] S. Karimi, F. Wang, Online review helpfulness: impact of reviewer profile image,
Decision Support Systems 96 (2017) 39–48.
[28] N. Korfiatis, E. García-Bariocanal, S. Sánchez-Alonso, Evaluating content quality
and helpfulness of online product reviews: the interplay of review helpfulness vs.
review content, Electronic Commerce Research and Applications 11 (3) (2012)
205–217.
[29] S. Krishnamoorthy, Linguistic features for review helpfulness prediction, Expert
Systems with Applications 42 (7) (2015) 3751–3759.
[30] E.-J. Lee, S.Y. Shin, When do consumers buy online product reviews? Effects of
review quality, product type, and reviewer’s photo, Computers in Human Behavior
31 (2014) 356–366.
[31] P.-J. Lee, Y.-H. Hu, K.-T. Lu, Assessing the helpfulness of online hotel reviews: a
classification-based approach, Telematics and Informatics 35 (2) (2018) 436–445.
[32] M. Li, C.-H. Tan, K.-K. Wei, K. Wang, Sequentiality of product review information
provision: an information foraging perspective, MIS Quarterly 41 (3) (2017)
867–892.
[33] S. Liang, M. Schuckert, R. Law, How to improve the stated helpfulness of hotel
reviews? A multilevel approach, International Journal of Contemporary Hospitality
Management 31 (2) (2019) 953–977.
[34] J.-S. Lim, A. Al-Aali, J.H. Heinrichs, Impact of satisfaction with e-retailers’ touch
points on purchase behavior: the moderating effect of search and experience product type, Marketing Letters 26 (2) (2014) 225–235.
[35] X.W. Liu, M. Schuckert, R. Law, Utilitarianism and knowledge growth during status
seeking: evidence from text mining of online reviews, Tourism Management 66
(2018) 38–46.
[36] Z. Liu, S. Park, What makes a useful online review? Implication for travel product
websites, Tourism Management 47 (2015) 140–151.
[37] J. Luan, Z. Yao, F. Zhao, H. Liu, Search product and experience product online
reviews: an eye-tracking study on consumers’ review search behavior, Computers in
Human Behavior 65 (2016) 420–430.
[38] C. Luo, X. Luo, Y. Xu, M. Warkentin, C.L. Sia, Examining the moderating role of
sense of membership in online review evaluations, Information & Management 52
(3) (2015) 305–316.
[39] M. Ma, R. Agarwal, Through a glass darkly: information technology design, identity
verification, and knowledge contribution in online communities, Information
Systems Research 18 (1) (2007) 42–67.
[40] J.E. Maddux, R.W. Rogers, Effects of source expertness, physical attractiveness, and
supporting arguments on persuasion – a case of brains over beauty, Journal of
Personality and Social Psychology 39 (2) (1980) 235–244.
[41] M.S.I. Malik, A. Hussain, Helpfulness of product reviews as a function of discrete
positive and negative emotions, Computers in Human Behavior 73 (2017) 290–302.
[42] M.S.I. Malik, A. Hussain, An analysis of review content and reviewer variables that
contribute to review helpfulness, Information Processing & Management 54 (1)
(2018) 88–104.
[43] S.M. Mudambi, D. Schuff, What makes a helpful online review? A study of customer
reviews on amazon.com, MIS Quarterly 34 (1) (2010) 185–200.
[44] P. Nelson, Information and consumer behavior, Journal of Political Economy 78 (2)
(1970) 311–329.
[45] P. Nelson, Advertising as information, Journal of Political Economy 82 (4) (1974)
729–754.
[46] T.L. Ngo-Ye, A.P. Sinha, The influence of reviewer engagement characteristics on
online review helpfulness: a text regression model, Decision Support Systems 61
(2014) 47–58.
[47] T.L. Ngo-Ye, A.P. Sinha, A. Sen, Predicting the helpfulness of online reviews using a
scripts-enriched text regression model, Expert Systems with Applications 71 (2017)
98–110.
[48] P. Pendharkar, A threshold varying bisection method for cost sensitive learning in
neural networks, Expert Systems with Applications 34 (2) (2008) 1456–1464.
[49] A. Qazi, K.B. Shah Syed, R.G. Raj, E. Cambria, M. Tahir, D. Alghazzawi, A conceptlevel approach to the analysis of online review helpfulness, Computers in Human
Behavior 58 (2016) 75–81.
[50] J. Qi, Z. Zhang, S. Jeon, Y. Zhou, Mining customer requirements from online reviews: a product improvement perspective, Information & Management 53 (8)
(2016) 951–963.
[51] P. Racherla, W. Friske, Perceived ‘usefulness’ of online consumer reviews: an exploratory investigation across three services categories, Electronic Commerce
Research and Applications 11 (6) (2012) 548–559.
[52] M. Salehan, D.J. Kim, Predicting the performance of online consumer reviews: a
sentiment mining approach to big data analytics, Decision Support Systems 81
(2016) 30–40.
[53] X.-F. Shao, Free or calculated shipping: impact of delivery cost on supply chains
moving to online retailing, International Journal of Production Economics 191
(2017) 267–277.
[54] M. Siering, J. Muntermann, B. Rajagopalan, Explaining and predicting online review helpfulness: the role of content and reviewer-related signals, Decision Support
Systems 108 (2018) 1–12.
[55] A. Singh, C.S. Tucker, A machine learning approach to product review disambiguation based on function, form and behavior classification, Decision Support
Systems 97 (2017) 81–91.
[56] A.S. Singh, C.S. Tucker, Investigating the heterogeneity of product feature preferences mined using online product data streams, ASME 2015 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2015.
[57] J.P. Singh, S. Irani, N.P. Rana, Y.K. Dwivedi, S. Saumya, P.K. Roy, Predicting the
“helpfulness” of online consumer reviews, Journal of Business Research 70 (2017)
346–355.
[58] L.C. Tidwell, J.B. Walther, Computer-mediated communication effects on disclosure, impressions, and interpersonal evaluations: getting to know one another a
bit at a time, Human Communication Research 28 (3) (2002) 317–348.
[59] R. Ullah, N. Amblee, W. Kim, H. Lee, From valence to emotions: exploring the
distribution of emotions in online product reviews, Decision Support Systems 81
(2016) 41–53.
[60] R. Ullah, A. Zeb, W. Kim, The impact of emotions on the helpfulness of movie
reviews, Journal of Applied Research and Technology 13 (3) (2015) 359–363.
[61] X. Wang, L. Tang, E. Kim, More than words: do emotional content and linguistic
style matching matter on restaurant review helpfulness? International Journal of
Hospitality Management 77 (2019) 438–447.
[62] D. Weathers, S.D. Swain, V. Grover, Can online product reviews be more helpful?
Examining characteristics of information content by product type, Decision Support
Systems 79 (2015) 12–23.
[63] J. Wu, Review popularity and review helpfulness: a model for user review effectiveness, Decision Support Systems 97 (2017) 92–103.
[64] S. Xiao, C.-P. Wei, M. Dong, Crowd intelligence: analyzing online product reviews
for preference measurement, Information & Management 53 (2) (2016) 169–182.
[65] D. Yin, S.D. Bond, H. Zhang, Anxious or angry: effects of discrete emotions on the
perceived helpfulness of online reviews, MIS Quarterly 38 (2) (2014) 539–560.
[66] D. Yu, Y. Mu, Y. Jin, Rating prediction using review texts with underlying sentiments, Information Processing Letters 117 (2017) 10–18.
[67] Y. Zhang, Z. Lin, Predicting the helpfulness of online product reviews: a multilingual approach, Electronic Commerce Research and Applications 27 (2018) 1–10.
[68] X. Zheng, S. Zhu, Z. Lin, Capturing the essence of word-of-mouth for social commerce: assessing the quality of online e-commerce reviews by a semi-supervised
approach, Decision Support Systems 56 (2013) 211–222.
[69] S. Zhou, B. Guo, The order effect on online review helpfulness: a social influence
perspective, Decision Support Systems 93 (2017) 77–87.
[70] D.H. Zhu, Z.J. Zhang, Y.P. Chang, S. Liang, Good discounts earn good reviews in
return? Effects of price promotion on online restaurant reviews, International
Journal of Hospitality Management 77 (2019) 178–186.
[71] H. Zhu, C.X.J. Ou, W.J.A.M. van den Heuvel, H. Liu, Privacy calculus and its utility
for personalization services in e-commerce: an analysis of consumer decisionmaking, Information & Management 54 (4) (2017) 427–437.

Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category

Li K, Chen Y, Zhang L, (2020), Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category, Journal of Retailing and Consumer Services, Volume 55, July 2020, 102107

https://www.sciencedirect.com/science/article/abs/pii/S0969698919304011

Mots clés : Avis en ligne, Facteurs motivants, Ventes de produits, Catégorie de produit, Méta-analyse, Effet modérateur

Résumé : Les avis en ligne, qui influencent considérablement les ventes de produits, ont été un sujet de recherche central dans le domaine du marketing. Pendant ce temps, certains facteurs de motivation liés aux détaillants en ligne ont été liés aux ventes de produits. Alors que plusieurs articles ont examiné l’impact entre les critiques en ligne et les facteurs de motivation sur les ventes de produits, de nombreuses conclusions tirées sont contradictoires. À partir de 28 études axées sur les avis et les ventes en ligne, cette étude effectue une méta-analyse pour analyser les véritables impacts de six facteurs liés aux avis (c.-à-d. Le nombre d’avis, le nombre d’étoiles, l’écart-type des notes, l’utilité, la durée de l’avis et le sentiment) et deux facteurs de motivation (c.-à-d. rabais sur les prix et expédition spéciale) sur les ventes de produits. Pendant ce temps, ce document étudie également comment un facteur lié au produit (c.-à-d. L’âge du produit) et un facteur lié aux examinateurs (i. e., la réputation de l’examinateur) influencent la relation entre les avis en ligne et les ventes de produits. De plus, pour étudier l’effet modérateur de la catégorie de produits, nous divisons la littérature sélectionnée en deux sous-groupes qui sont des produits de recherche et d’expérience. Les résultats indiquent que seules la longueur de l’examen et l’expédition spéciale n’ont pas d’impact significatif sur les ventes de produits, tandis que la catégorie de produit a un effet modérateur valide et spécifique sur la relation entre ces déterminants et les ventes. Les conclusions présentées auront des implications importantes pour la recherche universitaire et les futures pratiques de l’industrie. Nous divisons la littérature sélectionnée en deux sous-groupes qui sont des produits de recherche et d’expérience. Les résultats indiquent que seule la durée de l’examen et l’expédition spéciale n’ont pas d’impact significatif sur les ventes de produits, tandis que la catégorie de produit a un effet modérateur valide et spécifique sur la relation entre ces déterminants et les ventes. Les conclusions présentées auront des implications importantes pour la recherche universitaire et les futures pratiques de l’industrie. Nous divisons la littérature sélectionnée en deux sous-groupes qui sont des produits de recherche et d’expérience. Les résultats indiquent que seules la durée de l’examen et l’expédition spéciale n’ont pas d’impact significatif sur les ventes de produits, tandis que la catégorie de produit a un effet modérateur valide et spécifique sur la relation entre ces déterminants et les ventes. Les conclusions présentées auront des implications importantes pour la recherche universitaire et les futures pratiques de l’industrie.


Archak, N., Ghose, A., Ipeirotis, P.G., 2011. Deriving the pricing power of product
features by mining consumer reviews. Manag. Sci. 57, 1485–1509.
Artursson, E., 2015. Online Ratings–Who Decides what Games You Buy. Master Thesis in
Economics. Lunds Universitet.
Babi�c Rosario, A., Sotgiu, F., De Valck, K., Bijmolt, T.H.A., 2016. The effect of electronic
word of mouth on sales: A meta-analytic review of platform, product, and metric
factors. J. Mark. Res 53 (3), 297–318.
Bao, T., Chang, T.S., 2014a. Finding disseminators via electronic word of mouth message
for effective marketing communications. Decis. Support Syst. 67, 21–29.
Bao, T., Chang, T.S., 2014b. Why Amazon uses both the New York Times Best Seller List
and customer reviews: an empirical study of multiplier effects on product sales from
multiple earned media. Decis. Support Syst. 67, 1–8.
Blundell, M., 2014. Understanding and synthesizing my numerical data. A. Boland, M.G.
Cherry, R. Dickson (Eds.), Doing a Syst. Rev. Sage, London, UK 99–123.
Bosman, D.J., Boshoff, C., Van Rooyen, G.-J., 2013. The review credibility of electronic
word-of-mouth communication on e-commerce platforms. Manag. Dyn. J. South.
Afr. Inst. Manag. Sci. 22, 29–44.
Caballero, L., 2015. The Impact of Online Ratings on Video Game Sales. Master Thesis in
Management. Nova School of Business and Economics.
Chatterjee, P., 2001. Online Reviews: Do Consumers Use Them?.
Chen, K., Luo, P., Wang, H., 2017. An influence framework on product word-of-mouth
(WoM) measurement. Inf. Manag. 54, 228–240.
Chen, P.-Y., Dhanasobhon, S., Smith, M.D., 2008. All reviews are not created equal: the
disaggregate impact of reviews and reviewers at amazon. com, Working paper,
Carnegie Mellon University. Available at: SSRN. https://ssrn.com/abstract¼918083.
https://doi.org/10.2139/ssrn.918083.
Chen, P.-Y., Wu, S., Yoon, J., 2004. The impact of online recommendations and consumer
feedback on sales. In: International Conference on Information Systems (ICIS),
pp. 711–724.
Chen, Y., Xie, J., 2008. Online consumer review: word-of-mouth as a new element of
marketing communication mix. Manag. Sci. 54, 477–491.
Cho, Y., Im, I., Hiltz, R., Fjermestad, J., 2002. An analysis of online customer complaints:
implications for web complaint management. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences. IEEE, Hawaii, pp. 2308–2317.
Clemons, E.K., Gao, G.G., Hitt, L.M., 2006. When online reviews meet
hyperdifferentiation: a study of the craft beer industry. J. Manag. Inf. Syst. 23,
149–171.
Cui, G., Lui, H.-K., Guo, X., 2012. The effect of online consumer reviews on new product
sales. Int. J. Electron. Commer. 17, 39–58.
Cui, J., Pan, Y., Wang, L., 2012b. Impact of online review on sales: an empirical
investigation of experience products with different popularities. In: 2012
International Conference on Management of E-Commerce and E-Government. IEEE,
pp. 48–53.
DerSimonian, R., Kacker, R., 2007. Random-effects model for meta-analysis of clinical
trials: an update. Contemp. Clin. Trials 28, 105–114.
Dixit, S., Badgaiyan, A.J., Khare, A., 2019. An integrated model for predicting
consumer’s intention to write online reviews. J. Retailing Consum. Serv. 46,
112–120.
Duan, W., Gu, B., Whinston, A.B., 2008. Do online reviews matter?—an empirical
investigation of panel data. Decis. Support Syst. 45, 1007–1016.
Dwivedi, Y.K., Rana, N.P., Chen, H., Williams, M.D., 2011. A meta-analysis of the unified
theory of acceptance and use of technology (UTAUT). In: IFIP International Working
Conference on Governance and Sustainability in Information Systems-Managing the
Transfer and Diffusion of it. Springer, pp. 155–170.
Ehrmann, T., Schmale, H., 2008. The hitchhiker’s guide to the long tail: the influence of
online-reviews and product recommendations on book sales-Evidence from German
online retailing. In: International Conference on Information Systems, p. 157.
Eliashberg, J., Sawhney, M.S., 1994. Modeling goes to Hollywood: predicting individual
differences in movie enjoyment. Manag. Sci. 40, 1151–1173.
Fang, H., Zhang, J., Bao, Y., Zhu, Q., 2013. Towards effective online review systems in
the Chinese context: a cross-cultural empirical study. Electron. Commer. Res. Appl.
12, 208–220.
Field, A.P., 2001. Meta-analysis of correlation coefficients: a Monte Carlo comparison of
fixed-and random-effects methods. Psychol. Methods 6, 161.
Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., Sarris, J., 2017.
The efficacy of smartphone-based mental health interventions for depressive
symptoms: a meta-analysis of randomized controlled trials. World Psychiatr. 16,
287–298.
Fleiss, J.L., 1993. Review papers: the statistical basis of meta-analysis. Stat. Methods
Med. Res. 2, 121–145.
Floyd, K., Freling, R., Alhoqail, S., Cho, H.Y., Freling, T., 2014. How online product
reviews affect retail sales: a meta-analysis. J. Retailing 90, 217–232.
Forman, C., Ghose, A., Wiesenfeld, B., 2008. Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets. Inf. Syst. Res.
19, 291–313.
Franke, G.R., Huhmann, B.A., Mothersbaugh, D.L., 2004. Information content and
consumer readership of print ads: a comparison of search and experience products.
J. Acad. Market. Sci. 32, 20–31.
Girard, T., Dion, P., 2010. Validating the search, experience, and credence product
classification framework. J. Bus. Res. 63, 1079–1087.
Glass, G.V., 1976. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8.
Gu, B., Park, J., Konana, P., 2012. Research note—the impact of external word-of-mouth
sources on retailer sales of high-involvement products. Inf. Syst. Res. 23, 182–196.
Gu, B., Tang, Q., Whinston, A.B., 2013. The influence of online word-of-mouth on long
tail formation. Decis. Support Syst. 56, 474–481.
Gurevitch, J., Koricheva, J., Nakagawa, S., Stewart, G., 2018. Meta-analysis and the
science of research synthesis. Nature 555, 175–182.
Hellofs, L.L., Jacobson, R., 1999. Market share and customers’ perceptions of quality:
when can firms grow their way to higher versus lower quality? J. Market. 63, 16–25.
Herrmann, A., Huber, F., Coulter, R.H., 1997. Product and service bundling decisions and
their effects on purchase intention. Pricing Strategy & Pract. 5 (3), 99–104.
Hong, H., Xu, D., Wang, G.A., Fan, W., 2017. Understanding the determinants of online
review helpfulness: a meta-analytic investigation. Decis. Support Syst. 102, 1–11.
Hu, N., Bose, I., Koh, N.S., Liu, L., 2012. Manipulation of online reviews: an analysis of
ratings, readability, and sentiments. Decis. Support Syst. 52, 674–684.
Hu, N., Koh, N.S., Reddy, S.K., 2014. Ratings lead you to the product, reviews help you
clinch it? The mediating role of online review sentiments on product sales. Decis.
Support Syst. 57, 42–53.
Hu, N., Liu, L., Zhang, J.J., 2008. Do online reviews affect product sales? The role of
reviewer characteristics and temporal effects. Inf. Technol. Manag. 9, 201–214.
Jiang, B.-J., Wang, B., 2008. Impact of consumer reviews and ratings on sales, prices, and
profits: theory and evidence. In: International Conference on Information Systems,
p. 141.
Jim�enez, F.R., Mendoza, N.A., 2013. Too popular to ignore: the influence of online
reviews on purchase intentions of search and experience products. J. Interact.
Market. 27, 226–235.
Kim, J.B., 2014. Impact of online customer reviews and incentives on the product sales at
the online retail store: an empirical study at Amazon. com. In: Twentieth Americas
Conference on Information Systems, pp. 1–11.
King, W.R., He, J., 2006. A meta-analysis of the technology acceptance model. Inf.
Manag. 43, 740–755.
Lau, R.Y.K., Zhang, W., Bruza, P.D., Wong, K.-F., 2011. Learning domain-specific
sentiment lexicons for predicting product sales. In: 2011 IEEE 8th International
Conference on E-Business Engineering. IEEE, pp. 131–138.
Lee, J., Park, D.-H., Han, I., 2008. The effect of negative online consumer reviews on
product attitude: an information processing view. Electron. Commer. Res. Appl. 7,
341–352.
Lee, T.Y., Bradlow, E.T., 2011. Automated marketing research using online customer
reviews. J. Market. Res. 48, 881–894.
Li, H., Fang, Y., Wang, Y., Lim, K.H., Liang, L., 2015. Are all signals equal? Investigating
the differential effects of online signals on the sales performance of e-marketplace
sellers. Inf. Technol. People 28, 699–723.
Li, X., Hitt, L.M., 2010. Price effects in online product reviews: an analytical model and
empirical analysis. MIS Q. 809–831.
Li, X., Hitt, L.M., 2008. Self-selection and information role of online product reviews. Inf.
Syst. Res. 19, 456–474.
Li, X., Wu, C., Mai, F., 2019. The effect of online reviews on product sales: a joint
sentiment-topic analysis. Inf. Manag. 56, 172–184.
Lim, C., 1999. A meta-analytic review of international tourism demand. J. Trav. Res. 37,
273–284.
Lin, Z., 2014. An empirical investigation of user and system recommendations in ecommerce. Decis. Support Syst. 68, 111–124.
Lipsey, M.W., Wilson, D.B., 2001. Practical Meta-Analysis. Sage Publications, Inc.
Liu, Q., Huang, S., Zhang, L., 2016. The influence of information cascades on online
purchase behaviors of search and experience products. Electron. Commer. Res. 16,
553–580.
Liu, Q., Zhang, X., Zhang, L., Zhao, Y., 2018. The interaction effects of information
cascades, word of mouth and recommendation systems on online reading behavior:
an empirical investigation. Electron. Commer. Res. 1–27 https://doi.org/10.1007/
s10660-018-9312-0.
Maslowska, E., Malthouse, E.C., Bernritter, S.F., 2017. The effect of online customer
reviews’ characteristics on sales. In: Advances in Advertising Research, vol. VII.
Springer, pp. 87–100.
Meiseberg, B., 2016. The effectiveness of e-tailers’ communication practices in
stimulating sales of niche versus popular products. J. Retailing 92, 319–332.
K. Li et al.
Journal of Retailing and Consumer Services 55 (2020) 102107
11
Meng, Y., Wang, H., Zheng, L., 2018. Impact of online word-of-mouth on sales: the
moderating role of product review quality. New Rev. Hypermedia Multimedia 24,
1–27.
Moe, W., 2009. How Much Does a Good Product Rating Help a Bad Product? Modeling
the Role of Product Quality in the Relationship between Online Consumer Ratings
and Sales, Working Paper. University Of Maryland College Park.
Monroe, K.B., 2003. Pricing: Making Profitable Decisions, third ed. McGraw Hill Book
Company, New York.
Moon, S., Park, Y., Seog Kim, Y., 2014. The impact of text product reviews on sales. Eur.
J. Market. 48, 2176–2197.
Mudambi, S.M., Schuff, D., 2010. What makes a helpful online review? A study of
customer reviews on Amazon. com. MIS Q. 34, 185–200.
Nelson, P., 1974. Advertising as information. J. Polit. Econ. 82, 729–754.
Park, C., Lee, T.M., 2009. Information direction, website reputation and eWOM effect: a
moderating role of product type. J. Bus. Res. 62, 61–67.
Park, C.W., Stice, E.K., 2000. Analyst forecasting ability and the stock price reaction to
forecast revisions. Rev. Account. Stud. 5, 259–272.
Park, D.-H., Lee, J., Han, I., 2007. The effect of on-line consumer reviews on consumer
purchasing intention: the moderating role of involvement. Int. J. Electron. Commer.
11, 125–148.
Purnawirawan, N., Eisend, M., De Pelsmacker, P., Dens, N., 2015. A meta-analytic
investigation of the role of valence in online reviews. J. Interact. Market. 31, 17–27.
Ren, J., Nickerson, J.V., 2019. Arousal, valence, and volume: how the influence of online
review characteristics differs with respect to utilitarian and hedonic products. Eur. J.
Inf. Syst. 28, 272–290.
Rese, A., Schreiber, S., Baier, D., 2014. Technology acceptance modeling of augmented
reality at the point of sale: can surveys be replaced by an analysis of online reviews?
J. Retailing Consum. Serv. 21, 869–876.
Rosenthal, R., 1986. Meta-analytic procedures for social science research. Educ. Res. 15,
18–20.
Sahoo, N., Srinivasan, S., Dellarocas, C., 2013. The impact of online product reviews on
product returns and net sales. In: 2013 Workshop on Information Systems
Economics, Milan, Italy.
Schubert, P., Ginsburg, M., 2000. Virtual communities of transaction: the role of
personalization in electronic commerce. Electron. Mark. 10, 45–55.
Sparks, B.A., Browning, V., 2011. The impact of online reviews on hotel booking
intentions and perception of trust. Tourism Manag. 32, 1310–1323.
Tang, T., Fang, E., Wang, F., 2014. Is neutral really neutral? The effects of neutral usergenerated content on product sales. J. Market. 78, 41–58.
Weisstein, F.L., Song, L., Andersen, P., Zhu, Y., 2017. Examining impacts of negative
reviews and purchase goals on consumer purchase decision. J. Retailing Consum.
Serv. 39, 201–207.
Wu, J., Du, L., Dang, Y., 2018. Research on the impact of consumer review sentiments
from different websites on product sales. In: 2018 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C). IEEE, pp. 332–338.
Yan, J., Zhang, Li, Zhang, Lei, 2012. An empirical study of the impact of review content
on online reviews helpfulness in e-commerce. Inf. Sci. 30, 713–718.
Yang, Y., Park, S., Hu, X., 2018. Electronic word of mouth and hotel performance: a
meta-analysis. Tourism Manag. 67, 248–260. https://doi.org/10.1016/j.
tourman.2018.01.015.
Yao, R., Chen, J., 2013. Predicting movie sales revenue using online reviews. In: 2013
IEEE International Conference on Granular Computing (GrC). IEEE, pp. 396–401.
Ye, Q., Law, R., Gu, B., Chen, W., 2011. The influence of user-generated content on
traveler behavior: an empirical investigation on the effects of e-word-of-mouth to
hotel online bookings. Comput. Hum. Behav. 27, 634–639.
Ye, Y., Zhao, Y., Shang, J., Zhang, L., 2019. A hybrid IT framework for identifying highquality physicians using big data analytics. Int. J. Inf. Manag. 47, 65–75.
You, Y., Vadakkepatt, G.G., Joshi, A.M., 2015. A meta-analysis of electronic word-ofmouth elasticity. J. Market. 79, 19–39.
Zhang, L., Ma, B., Cartwright, D.K., 2013. The impact of online user reviews on cameras
sales. Eur. J. Market. 47, 1115–1128.
Zhang, L., Zhu, J., Liu, Q., 2012. A meta-analysis of mobile commerce adoption and the
moderating effect of culture. Comput. Hum. Behav. 28, 1902–1911.
Zhao, Y., Ni, Q., Zhou, R., 2018. What factors influence the mobile health service
adoption? A meta-analysis and the moderating role of age. Int. J. Inf. Manag. 43,
342–350.
Zhu, F., Zhang, X., 2010. Impact of online consumer reviews on sales: the moderating
role of product and consumer characteristics. J. Market. 74, 133–148.
Zhu, L., Yin, G., He, W., 2014. Is this opinion leader’s review useful? Peripheral cues for
online review helpfulness. J. Electron. Commer. Res. 15, 267.

Credibility of negative online product reviews: Reviewer gender, reputation and emotion effects

Craciun G, Moore K, (2019), Credibility of negative online product reviews: Reviewer gender, reputation and emotion effects, Computers in Human Behavior, Volume 97, August 2019, Pages 104-115

https://www.sciencedirect.com/science/article/pii/S0747563219301025

Mots clés : Bouche à oreille électronique, Stéréotypes de genre, Émotion, Crédibilité de l’examinateur, Avis sur les produits, Expressions émotionnelles, Théorie de l’espérance linguistique

Résumé : La documentation électronique sur le bouche-à-oreille confirme la conclusion solide selon laquelle les avis négatifs influencent généralement plus le comportement des consommateurs que les avis positifs. De plus, des études récentes suggèrent qu’une grande partie du biais de négativité est motivée par les émotions distinctes intégrées dans le contenu du bouche à oreille négatif  et les effets d’interaction entre les émotions et d’autres facteurs sources. Bien que le sexe de la source d’information soit une heuristique courante utilisée dans l’évaluation des messages, il s’agit de la première étude à examiner l’effet des stéréotypes de genre sur le bouche à oreille émotionnel. Deux expériences basées sur le Web montrent que lorsque des indices de réputation de critique sont présents, le contenu émotionnel dans le bouche à oreille négatif diminue la crédibilité des critiques masculins et l’utilité de leurs critiques, mais n’affecte pas les critiques rédigées par des femmes. En revanche, lorsque les indices de réputation sont absents, la présence d’émotions dans le bouche à oreille négatif diminue la crédibilité des examinateurs féminins, mais pas celle des examinateurs masculins. L’indice de réputation a un effet positif sur la crédibilité et l’utilité du bouche à oreille négatif.

Grandes lignes :

  • Le bouche-à-oreille négatif influe généralement davantage sur le comportement des consommateurs que le bouche-à-oreille positif.
  • Cette étude examine les effets de la réputation et des stéréotypes liés au sexe sur la crédibilité et l’utilité du bouche-à-oreille négatif
  • Lorsque les indices de réputation des évaluateurs étaient absents, le contenu émotionnel du bouche-à-oreille négatif a nui à l’évaluation des critiques rédigées par des femmes
  • Lorsque les indices de réputation des examinateurs étaient présents, le contenu émotionnel du bouche-à-oreille négatif a nui à l’évaluation des critiques rédigées par des hommes.
  • L’indice de réputation a eu un effet positif sur la crédibilité et l’utilité du bouche-à-oreille négatif.

Afifi, W. A., & Metts, S. (1998). Characteristics and consequences of expectation violations in close relationships. Journal of Social and Personal Relationships, 15(3),
365–392. https://doi.org/10.1177/0265407598153004.
Ahmad, S. N., & Laroche, M. (2015). How do expressed emotions affect the helpfulness of
a product review? Evidence from reviews using latent semantic analysis. International
Journal of Electronic Commerce, 20(1), 76–111. https://doi.org/10.1080/10864415.
2016.1061471.
Armstrong, C. L., & McAdams, M. J. (2009). Blogs of information: How gender cues and
individual motivations influence perceptions of credibility. Journal of ComputerMediated Communication, 14(3), 435–456. https://doi.org/10.1111/j.1083-6101.
2009.01448.x.
Armstrong, C. L., & Nelson, M. R. (2005). How newspaper sources trigger gender stereotypes. Journalism & Mass Communication Quarterly, 82(4), 820–837.
Averbeck, J. M., & Miller, C. (2014). Expanding language expectancy theory: The suasory
effects of lexical complexity and syntactic complexity on effective message design.
Communication Studies, 65(1), 72–95. https://doi.org/10.1080/10510974.2013.
775955.
Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers’
G. Craciun and K. Moore Computers in Human Behavior 97 (2019) 104–115
113
objectives and review cues. International Journal of Electronic Commerce, 17(2),
99–126. https://doi.org/10.2753/JEC1086-4415170204.
Biernat, M. (2003). Toward a broader view of social stereotyping. American Psychologist,
58(12), 1019–1027. https://doi.org/10.1037/0003-066X.58.12.1019.
Biernat, M., Crandall, C. S., Young, L. V., Kobrynowicz, D., & Halpin, S. M. (1998). All that
you can be: Stereotyping of self and others in a military context. Journal of Personality
and Social Psychology, 75(2), 301–317. https://doi.org/10.1037/0022-3514.75.2.
301.
Biernat, M., Ma, J. E., & Nario-Redmond, M. R. (2008). Standards to suspect and diagnose
stereotypical traits. Social Cognition, 26(3), 288–313.
Brescoll, V. L., & Uhlmann, E. L. (2008). Can an angry woman get ahead? Status conferral,
gender, and expression of emotion in the workplace. Psychological Science, 19(3),
268–275. https://doi.org/10.1111/j.1467-9280.2008.02079.x.
Brody, L. R., & Hall, J. A. (1993). Gender and emotion. Handbook of emotions (pp. 447–
460). New York, NY, US: Guilford Press.
Brown, J. J., & Reingen, P. H. (1987). Social ties and word-of-mouth referral behavior.
Journal of Consumer Research, 14(3), 350–362. https://doi.org/10.1086/209118.
Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of Consumer Research, 12(1), 1–16.
Burgoon, M., Birk, T. S., & Hall, J. R. (1991). Compliance and satisfaction with physicianpatient communication. An expectancy theory interpretation of gender differences.
Human Communication Research, 18(2), 177–208. https://doi.org/10.1111/j.1468-
2958.1991.tb00543.x.
Burgoon, M., Denning, V. P., & Roberts, L. (2002). Language expectancy theory. In J. P.
Dillard, & M. Pfau (Eds.). The persuasion handbook : Developments in theory and practice
(pp. 117–136). Thousand Oaks, CA: Sage Publications.
Burgoon, M., Jones, S. B., & Stewart, D. (1975). Toward a message-centered theory of
persuasion: Three empirial investigations of language intensity. Human
Communication Research, 1(3), 240–256. https://doi.org/10.1111/j.1468-2958.1975.
tb00271.x.
Buttner, E. H., & McEnally, M. (1996). The interactive effect of influence tactic, applicant
gender, and type of job on hiring recommendations. Sex Roles, 34(7–8), 581–591.
Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the ‘helpfulness’ of online user reviews: A text mining approach. Decision Support Systems,
50(2), 511–521. https://doi.org/10.1016/j.dss.2010.11.009.
Carli, L. L. (2001). Gender and social influence. Journal of Social Issues, 57(4), 725.
Carpenter, S., & Trentham, S. (1998). Subtypes of women and men: A new taxonomy and
an exploratory categorical analysis. Journal of Social Behavior & Personality, 13(4),
679–696.
Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29(6), 2156–2160. https://doi.org/
10.1016/j.chb.2013.05.009.
Chai, S., Das, S., & Rao, H. R. (2011). Factors affecting bloggers’ knowledge sharing: An
investigation across gender. Journal of Management Information Systems, 28(3),
309–342.
Chaiken, S. (1980). Heuristic versus systematic information processing and the use of
source versus message cues in persuasion. Journal of Personality and Social Psychology,
39(5), 752–766.
Chaiken, S., & Maheswaran, D. (1994). Heuristic processing can bias systematic processing: Effects of source credibility, argument ambiguity, and task importance on attitude judgment. Journal of Personality and Social Psychology, 66(3), 460–473. https://
doi.org/10.1037/0022-3514.66.3.460.
Chakravarty, A., Liu, Y., & Mazumdar, T. (2010). The differential effects of online wordof-mouth and critics’ reviews on pre-release movie evaluation. Journal of Interactive
Marketing, 24(3), 185–197. https://doi.org/10.1016/j.intmar.2010.04.001.
Chen, G. M., & Abedin, Z. (2014). Exploring differences in how men and women respond
to threats to positive face on social media. Computers in Human Behavior, 38,
118–126. https://doi.org/10.1016/j.chb.2014.05.029.
Cheung, C. M. K., Lee, M. K. O., & Rabjohn, N. (2008). The impact of electronic word‐of‐mouth: The adoption of online opinions in online customer communities. Internet
Research, 18(3), 229–247. https://doi.org/10.1108/10662240810883290.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book
reviews. Journal of Marketing Research, 43(3), 345–354. https://doi.org/10.1509/
jmkr.43.3.345.
Chua, A. Y. K., & Banerjee, S. (2015). Understanding review helpfulness as a function of
reviewer reputation, review rating, and review depth. Journal of the Association for
Information Science and Technology, 66(2), 354–362. https://doi.org/10.1002/asi.
23180.
Chu, S.-C., & Kim, Y. (2011). Determinants of consumer engagement in electronic wordof-mouth (eWOM) in social networking sites. International Journal of Advertising,
30(1), 47–75. https://doi.org/10.2501/IJA-30-1-047-075.
Clemons, E. K., Gao, G. G., & Hitt, L. M. (2006). When online reviews meet hyperdifferentiation: A study of the craft beer industry. Journal of Management
Information Systems, 23(2), 149–171. https://doi.org/10.2753/MIS0742-
1222230207.
Cotterill, S. T. (2018). The psychology of performance. London: Routledge.
Deaux, K., & Lewis, L. L. (1984). Structure of gender stereotypes: Interrelationships
among components and gender label. Journal of Personality and Social Psychology,
46(5), 991–1004. https://doi.org/10.1037/0022-3514.46.5.991.
Derks, D., Bos, A. E. R., & von Grumbkow, J. (2007). Emoticons and social interaction on
the Internet: The importance of social context. Computers in Human Behavior, 23(1),
842–849. https://doi.org/10.1016/j.chb.2004.11.013.
Dou, X., Walden, J. A., Lee, S., & Lee, J. Y. (2012). Does source matter? Examining source
effects in online product reviews. Computers in Human Behavior, 28(5), 1555–1563.
https://doi.org/10.1016/j.chb.2012.03.015.
Eckes, T. (2002). Paternalistic and envious gender stereotypes: Testing predictions from
the stereotype content model. Sex Roles, 47(3/4), 99–114.
Fabes, R.,A., & Martin, C. L. (1991). Gender and age stereotypes of emotionality.
Personality and Social Psychology Bulletin, 17(5), 532–540. https://doi.org/10.1177/
0146167291175008.
Felix, R., Rauschnabel, P. A., & Hinsch, C. (2017). Elements of strategic social media
marketing: A holistic framework. Journal of Business Research, 70, 118–126. https://
doi.org/10.1016/j.jbusres.2016.05.001.
Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of
Business Research, 68(6), 1261–1270. https://doi.org/10.1016/j.jbusres.2014.11.
006.
Fiske, S. T. (1993). Social cognition and social perception. Annual Review of Psychology,
44(1), 155–194. https://doi.org/10.1146/annurev.ps.44.020193.001103.
Folse, J. A. G., Porter, M., III, Godbole, M. B., & Reynolds, K. E. (2016). The effects of
negatively valenced emotional expressions in online reviews on the reviewer, the
review, and the product. Psychology and Marketing, 33(9), 747–760. https://doi.org/
10.1002/mar.20914.
Ford, J. B. (2017). Amazon’s mechanical Turk: A comment. Journal of Advertising, 46(1),
156–158. https://doi.org/10.1080/00913367.2016.1277380.
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between
reviews and sales: The role of reviewer identity disclosure in electronic markets.
Information Systems Research, 19(3), 291–313. https://doi.org/10.1287/isre.1080.
0193.
Gershoff, A. D., Broniarczyk, S. M., & West, P. M. (2001). Recommendation or evaluation?
Task sensitivity in information source selection. Journal of Consumer Research, 28(3),
418–438. https://doi.org/10.1086/323730.
Guo, B., & Zhou, S. (2017). What makes population perception of review helpfulness: An
information processing perspective. Electronic Commerce Research, 17(4), 585–608.
https://doi.org/10.1007/s10660-016-9234-7.
Hess, U., Adams, R. B., Jr., & Kleck, R. E. (2007). When two do the same, it might not
mean the same: The perception of emotional expressions shown by men and women.
In U. Hess, P. Philippot, U. Hess, & P. Philippot (Eds.). Group dynamics and emotional
expression (pp. 33–50). New York, NY, US: Cambridge University Press.
Hess, U., Senécal, S., Kirouac, G., Herrera, P., Philippot, P., & Kleck, R. E. (2000).
Emotional expressivity in men and women: Stereotypes and self-perceptions.
Cognition & Emotion, 14(5), 609–642. https://doi.org/10.1080/
02699930050117648.
Hong, H., Xu, D., Wang, G. A., & Fan, W. (2017). Understanding the determinants of
online review helpfulness: A meta-analytic investigation. Decision Support Systems,
102, 1–11. https://doi.org/10.1016/j.dss.2017.06.007.
Jansen, J. (2010). Online product research. Retrieved from: http://pewinternet.org/
Reports/2010/Online-Product-Research.aspx.
Jensen, M. L., Averbeck, J. M., Zhang, Z., & Wright, K. B. (2013). Credibility of anonymous online product reviews: A language expectancy perspective. Journal of
Management Information Systems, 30(1), 293–324. https://doi.org/10.2753/MIS0742-
1222300109.
Kang, Y. S., & Herr, P. M. (2006). Beauty and the beholder: Toward an integrative model
of communication source effects. Journal of Consumer Research, (1), 123. https://doi.
org/10.1086/504143.
Kees, J., Berry, C., Burton, S., & Sheehan, K. (2017). An analysis of data quality:
Professional panels, student subject pools, and Amazon’s Mechanical Turk. Journal of
Advertising, 46(1), 141–155. https://doi.org/10.1080/00913367.2016.1269304.
Kim, J., & Gupta, P. (2012). Emotional expressions in online user reviews: How they
influence consumers’ product evaluations. Journal of Business Research, 65(7),
985–992. https://doi.org/10.1016/j.jbusres.2011.04.013.
Kim, S., Kandampully, J., & Bilgihan, A. (2018). The influence of eWOM communications:
An application of online social network framework. Computers in Human Behavior, 80,
243–254. https://doi.org/10.1016/j.chb.2017.11.015.
Kim, S. J., Maslowska, E., & Malthouse, E. C. (2017). Understanding the effects of different review features on purchase probability. International Journal of Advertising,
1–25. https://doi.org/10.1080/02650487.2017.1340928.
Kim, S. J., Wang, R. J.-H., Maslowska, E., & Malthouse, E. C. (2016). “Understanding a
fury in your words”: The effects of posting and viewing electronic negative word-ofmouth on purchase behaviors. Computers in Human Behavior, 54, 511–521. https://
doi.org/10.1016/j.chb.2015.08.015.
Kuan, K. K. Y., Kai-Lung, H., Prasarnphanich, P., & Hok-Yin, L. (2015). What makes a
review voted? An empirical investigation of review voting in online review systems.
Journal of the Association for Information Systems, 16(1), 48–71.
Lee, D.-H., Im, S., & Taylor, C. R. (2008). Voluntary self-disclosure of information on the
Internet: A multimethod study of the motivations and consequences of disclosing
information on blogs. Psychology and Marketing, 25(7), 692–710.
Li, M., Huang, L., Tan, C.-H., & Wei, K.-K. (2013). Helpfulness of online product reviews
as seen by consumers: Source and content features. International Journal of Electronic
Commerce, 17(4), 101–136. https://doi.org/10.2753/JEC1086-4415170404.
Ludwig, S., de Ruyter, K., Friedman, M., Brüggen, E. C., Wetzels, M., & Pfann, G. (2013).
More than words: The influence of affective content and linguistic style matches in
online reviews on conversion rates. Journal of Marketing, 77(1), 87–103. https://doi.
org/10.1509/jm.11.0560.
Mittal, B. (1995). A comparative analysis of four scales of consumer involvement.
Psychology and Marketing, 12(7), 663–682.
Pan, L.-Y., & Chiou, J.-S. (2011). How much can you trust online information? Cues for
perceived trustworthiness of consumer-generated online information. Journal of
Interactive Marketing, 25(2), 67–74. https://doi.org/10.1016/j.intmar.2011.01.002.
Pan, Y., & Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated
product reviews. Journal of Retailing, 87(4), 598–612. https://doi.org/10.1016/j.
G. Craciun and K. Moore Computers in Human Behavior 97 (2019) 104–115
114
jretai.2011.05.002.
Park, D.-H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral
intention depending on consumer involvement. Electronic Commerce Research and
Applications, 7(4), 386–398. https://doi.org/10.1016/j.elerap.2007.11.004.
Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect:
A moderating role of product type. Journal of Business Research, 62(1), 61–67. https://
doi.org/10.1016/j.jbusres.2007.11.017.
Peer, E., Brandimarte, L., Samat, S., & Acquisti, A. (2017). Beyond the Turk: Alternative
platforms for crowdsourcing behavioral research. Journal of Experimental Social
Psychology, 70, 153–163. https://doi.org/10.1016/j.jesp.2017.01.006.
Quaschning, S., Pandelaere, M., & Vermeir, I. (2015). When consistency matters: The
effect of valence consistency on review helpfulness. Journal of Computer-Mediated
Communication, 20(2), 136–152. https://doi.org/10.1111/jcc4.12106.
Rauschnabel, P. A., Kammerlander, N., & Ivens, B. S. (2016). Collaborative brand attacks
in social media: Exploring the antecedents, characteristics, and consequences of a
new form of brand crises. Journal of Marketing Theory and Practice, 24(4), 381–410.
https://doi.org/10.1080/10696679.2016.1205452.
Richins, M. L. (1997). Measuring emotions in the consumption experience. Journal of
Consumer Research, 24(2), 127–146.
Rogers, E. M. (1995). Diffusion of innovations (4 ed.). New York, NY: The Free Press.
Salerno, J. M., & Peter-Hagene, L. C. (2015). One angry woman: Anger expression increases influence for men, but decreases influence for women, during group deliberation. Law and Human Behavior, 39(6), 581–592. https://doi.org/10.1037/
lhb0000147.
Schellekens, G. A. C., Verlegh, P. W. J., & Smidts, A. (2010). Language abstraction in word
of mouth. Journal of Consumer Research, 37(2), 207–223.
Schlosser, A. E., White, T. B., & Lloyd, S. M. (2006). Converting web site visitors into
buyers: How web site investment increases consumer trusting beliefs and online
purchase intentions. Journal of Marketing, 70(2), 133–148. https://doi.org/10.1509/
jmkg.70.2.133.
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative
consumer reviews on the web. Journal of Interactive Marketing, 21(4), 76–94. https://
doi.org/10.1002/dir.20090.
Shin, D. (2018). Empathy and embodied experience in virtual environment: To what
extent can virtual reality stimulate empathy and embodied experience? Computers in
Human Behavior, 78, 64–73. https://doi.org/10.1016/j.chb.2017.09.012.
Shin, D., & Biocca, F. (2018). Exploring immersive experience in journalism. New Media &
Society, 20(8), 2800–2823. https://doi.org/10.1177/1461444817733133.
Shin, D., Lee, S., & Hwang, Y. (2017). How do credibility and utility play in the user
experience of health informatics services? Computers in Human Behavior, 67,
292–302. https://doi.org/10.1016/j.chb.2016.11.007.
Sparks, B. A., & Browning, V. (2011). The impact of online reviews on hotel booking
intentions and perception of trust. Tourism Management, 32(6), 1310–1323. https://
doi.org/10.1016/j.tourman.2010.12.011.
Stout, J. G., Grunberg, V. A., & Ito, T. A. (2016). Gender roles and stereotypes about
science sareers help explain women and men’s science pursuits. Sex Roles, 75(9–10),
490–499. https://doi.org/10.1007/s11199-016-0647-5.
Tang, T., Fang, E., & Feng, W. (2014). Is neutral really neutral? The effects of neutral usergenerated content on product sales. Journal of Marketing, 78(4), 41–58.
Thomas, K. A., & Clifford, S. (2017). Validity and Mechanical Turk: An assessment of
exclusion methods and interactive experiments. Computers in Human Behavior, 77,
184–197. https://doi.org/10.1016/j.chb.2017.08.038.
Thon, F. M., & Jucks, R. (2017). Believing in expertise: How authors’ credentials and
language use influence the credibility of online health information. Health
Communication, 32(7), 828–836. https://doi.org/10.1080/10410236.2016.1172296.
Timmers, M., Fischer, A. H., & Manstead, A. S. R. (2003). Ability versus vulnerability:
Beliefs about men’s and women’s emotional behaviour. Cognition & Emotion, 17(1),
41–63. https://doi.org/10.1080/02699930302277.
Ullah, R., Amblee, N., Kim, W., & Lee, H. (2016). From valence to emotions: Exploring the
distribution of emotions in online product reviews. Decision Support Systems, 81,
41–53. https://doi.org/10.1016/j.dss.2015.10.007.
Van Noort, G., & Willemsen, L. M. (2012). Online damage control: The effects of proactive
versus reactive webcare interventions in consumer-generated and brand-generated
platforms. Journal of Interactive Marketing (Elsevier), 26(3), 131–140. https://doi.org/
10.1016/j.intmar.2011.07.001.
Verhagen, T., Nauta, A., & Feldberg, F. (2013). Negative online word-of-mouth:
Behavioral indicator or emotional release? Computers in Human Behavior, 29(4),
1430–1440. https://doi.org/10.1016/j.chb.2013.01.043.
Vermeulen, A., Vandebosch, H., & Heirman, W. (2018). #Smiling, #venting, or both?
Adolescents’ social sharing of emotions on social media. Computers in Human
Behavior, 84, 211–219. https://doi.org/10.1016/j.chb.2018.02.022.
Vonk, R., & Ashmore, R. D. (2003). Thinking about gender types: Cognitive organization
of female and male types. British Journal of Social Psychology, 42(2), 257.
Wang, S. S., Moon, S.-I., Kwon, K. H., Evans, C. A., & Stefanone, M. A. (2010). Face off:
Implications of visual cues on initiating friendship on Facebook. Computers in Human
Behavior, 26(2), 226–234. https://doi.org/10.1016/j.chb.2009.10.001.
Wigley, S., & Lewis, B. K. (2012). Rules of engagement: Practice what you tweet. Public
Relations Review, 38(1), 165–167. https://doi.org/10.1016/j.pubrev.2011.08.020.
Willemsen, L. M., Neijens, P. C., & Bronner, F. (2012). The ironic effect of source identification on the perceived credibility of online product reviewers. Journal of
Computer-Mediated Communication, 18(1), 16–31. https://doi.org/10.1111/j.1083-
6101.2012.01598.x.
Wolf, A. (2000). Emotional expression online: Gender differences in emoticon use.
CyberPsychology and Behavior, 3(5), 827–833. https://doi.org/10.1089/
10949310050191809.
Wood, W., & Eagly, A. H. (2010). Gender. In (5 ed.). S. T. Fiske, D. T. Gilbert, & G. Lindzey
(Vol. Eds.), Handbook of social psychology: Vol. 1, (pp. 629–667). New York, NY: John
Wiley.
Wu, K., Noorian, Z., Vassileva, J., & Adaji, I. (2015). How buyers perceive the credibility
of advisors in online marketplace: Review balance, review count and misattribution.
Journal of Trust Management, 2(1), 1–18. https://doi.org/10.1186/s40493-015-
0013-5.
Xu, Q. (2014). Should I trust him? The effects of reviewer profile characteristics on eWOM
credibility. Computers in Human Behavior, 33, 136–144. https://doi.org/10.1016/j.
chb.2014.01.027.
Yang, J., & Mai, E. (2010). Experiential goods with network externalities effects: An
empirical study of online rating system. Journal of Business Research, 63(9),
1050–1057. https://doi.org/10.1016/j.jbusres.2009.04.029.
Yin, D., Bond, S. D., & Zhang, H. (2014a). Anxious or angry? Effects of discrete emotions
on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539–560.
Yin, G., Wei, L., Xu, W., & Chen, M. (2014b). Exploring heuristic cues for consumer
perceptions of online reviews helpfulness: The case of yelp.com. Paper presented at the
pacific asia conference on information systems.
Zhang, J. Q., Craciun, G., & Shin, D. (2010). When does electronic word-of-mouth matter?
A study of consumer product reviews. Journal of Business Research, 63(12),
1336–1341. https://doi.org/10.1016/j.jbusres.2009.12.011.
Zhou, L. Y., Dawson, M. L., Herr, C. L., & Stukas, S. K. (2004). American and Chinese
college students’ predictions of people’s occupations, housework responsibilities, and
hobbies as a function of cultural and gender influences. Sex Roles, 50(7–8), 547–563.
Zhou, S., & Guo, B. (2015). The interactive effect of review rating and text sentiment on review
helpfulness, Vol. 239. Springer Verlag.
Zhu, L., Yin, G., & He, W. (2014). Is this opinion leader’s review useful? Peripheral cues
for online review helpfulness. Journal of Electronic Commerce Research, 15(4),
267–280.