Design for the pricing strategy of return-freight insurance based on online product reviews

Geng S, Li W, Qu X, Chen L, (2017), Design for the pricing strategy of return-freight insurance based on online product reviews, Electronic Commerce Research and ApplicationsVolume 25, September–October 2017, Pages 16-28

https://www.sciencedirect.com/science/article/pii/S156742231730039X

Mots clés : Assurance retour de fret, Avis de produit en ligne, Incertitude sur l’ajustement du produit, Politique de retour

Résumé : Pour résoudre les litiges liés aux achats en ligne avec le retour des produits, certaines compagnies d’assurance ont développé un nouveau type d’assurance appelé assurance retour-fret pour compenser la perte de frais de retour par les consommateurs. La détermination traditionnelle des primes d’assurance n’a pas complètement fusionné tous les facteurs de commerce électronique, tels que l’incertitude de l’ajustement des produits des achats en ligne, qui pourrait affecter à la fois la demande d’assurance et la quantité de retour. Sur la base de ces caractéristiques, nous développons un modèle de maximisation des bénéfices en termes de certains paramètres de réaction du marché, en particulier l’incertitude de l’ajustement du produit, et calculons la stratégie de tarification optimale, y compris la prime d’assurance et la compensation. En utilisant la théorie des perspectives, nous expliquons pourquoi les avis de produits en ligne pourrait influencer le comportement d’aversion au risque des demandeurs d’assurance dans la situation du commerce électronique. Ensuite, nous résolvons pour la prime et la compensation raisonnables accordées aux avis de produits en ligne du point de vue de la compagnie d’assurance et obtenons un certain nombre de directives managériales pour utiliser les variables de marketing et de stratégie opérationnelle pour influencer ces paramètres de réaction afin d’obtenir le maximum d’avantages du marché. Il est intéressant de noter que lorsque la sensibilité des consommateurs à l’incertitude sur l’ajustement du produit est modérée, une augmentation de l’incertitude sur l’ajustement du produit déplace la prime d’assurance et la compensation dans la direction opposée.

Grandes lignes :

  • Assurance de retour de fret, qui compense la perte de frais de retour de produit en ligne.
  • L’incertitude liée à l’ajustement du produit doit être prise en compte lors de l’analyse de la stratégie de tarification de l’assurance retour-fret.
  • La relation entre la prime d’assurance retour-fret et l’incertitude sur l’ajustement du produit n’est pas une corrélation positive.
  • Le bénéfice de l’assureur n’augmente pas toujours à mesure que la prime d’assurance retour-fret augmente.
  • L’aléa moral doit être considéré comme une contrainte importante dans la conception d’une stratégie de tarification d’assurance.

Banjo, S., 2013. Rampant returns plague e-retailers. Wall Street J.
Barberis, Nicholas C., 2013. Thirty years of prospect theory in economics: a review
and assessment. J. Econ. Perspect. 27 (1), 173–196.
Barseghyan, Levon, Molinari, Francesca, O’Donoghue, Ted, Teitelbaum, Joshua C.,

  1. The nature of risk preferences: evidence from insurance choices. Am.
    Econ. Rev. 103 (6), 2499–2529.
    Benartzi, Shlomo, Previtero, Alessandro, Thaler, Richard H., 2011. Annuitization
    puzzles. J. Econ. Perspect. 25 (4), 143–164.
    Chen, Yubo, Xie, Jinhong, 2008. Online consumer review: word-of-mouth as a new
    element of marketing communication mix. Manage. Sci. 54 (3), 477–491.
    Cox, Donald F., Rich, Stuart U., 1964. Perceived risk and consumer decision-making:
    the case of telephone shopping. J. Mark. Res. 1 (4), 32–39.
    De Roover, Florence Edler, 1945. Early examples of marine insurance. J. Econ. Hist. 5
    (02), 172–200.
    Dellarocas, Chrysanthos, 2003. The digitization of word of mouth: promise and
    challenges of online feedback mechanisms. Manage. Sci. 49 (10), 1407–1424.
    Dellarocas, Chrysanthos, 2006. Strategic manipulation of internet opinion forums:
    Implications for consumers and firms. Manage. Sci. 52 (10), 1577–1593.
    Dellarocas, Chrysanthos, Wood, Charles A., 2008. The sound of silence in online
    feedback: Estimating trading risks in the presence of reporting bias. Manage.
    Sci. 54 (3), 460–476.
    Dimoka, Angelika, Yili, Hong, Pavlou, Paul A., 2012. ‘On product uncertainty in
    online markets: theory and evidence’, MIS Q. 36.
    S. Geng et al. / Electronic Commerce Research and Applications 25 (2017) 16–28 27
    The Economist, 2013. ‘Return to santa’, The Economist.
    Edwards, Jeffrey R., Parry, Mark E., 1993. On the use of polynomial regression
    equations as an alternative to difference scores in organizational research. Acad.
    Manag. J. 36 (6), 1577–1613.
    Feyen, Erik, Lester, Rodney R., Roberto De Rezende Rocha, 2011. ‘What drives the
    development of the insurance sector? An empirical analysis based on a panel of
    developed and developing countries’, World Bank Policy Research Working
    Paper Series.
    Geng, Shidao, Wenli, Li, Hao, Chen, 2017. Complimentary return-freight insurance
    as quality signals a new return policy in e-commerce. In: ‘Proceedings of the
    50th Hawaii International Conference on System Sciences’.
    Gu, Bin, Ye, Qiang, 2014. First step in social media: measuring the influence of
    online management responses on customer satisfaction. Prod. Oper. Manage. 23
    (4), 570–582.
    Gupta, Sumeet, Kim, Hee-Woong, 2010. Value-driven internet shopping: the mental
    accounting theory perspective. Psychol. Market. 27 (1), 13–35.
    Hong, Yili, Pavlou, Paul A., 2014. Product fit uncertainty in online markets: nature,
    effects, and antecedents. Inf. Syst. Res. 25 (2), 328–344.
    Hu, Nan, Bose, Indranil, Koh, Noi Sian, Liu, Ling, 2012. Manipulation of online
    reviews: an analysis of ratings, readability, and sentiments. Decis. Support Syst.
    52 (3), 674–684.
    Hu, Nan, Zhang, Jie, Pavlou, Paul A., 2009. Overcoming the j-shaped distribution of
    product reviews. Commun. ACM 52 (10), 144–147.
    Hu, Wei-Yin, Scott, Jason S., 2007. Behavioral obstacles in the annuity market. Finan.
    Anal. J. 63 (6), 71–82.
    John, A.H., 1958. The london assurance company and the marine insurance market
    of the eighteenth century. Economica 25 (98), 126–141.
    Kahneman, Daniel, Tversky, Amos, 1979. Prospect theory: an analysis of decision
    under risk. Econometrica 47 (2), 263–291.
    Keane, Michael, Stavrunova, Olena, 2016. Adverse selection, moral hazard and the
    demand for medigap insurance. J. Econometrics 190 (1), 62–78.
    Kim, Hee-Woong, Yunjie, Xu, Gupta, Sumeet, 2012. Which is more important in
    internet shopping, perceived price or trust? Electron. Commer. Res. Appl. 11 (3),
    241–252.
    Kim, Youngsoo, Krishnan, Ramayya, 2015. On product-level uncertainty and
    online purchase behavior: an empirical analysis. Manage. Sci. 61 (10), 2449–
    2467.
    Kwark, Young, Chen, Jianqing, Raghunathan, Srinivasan, 2014. Online product
    reviews: implications for retailers and competing manufacturers. Inf. Syst. Res.
    25 (1), 93–110.
    Lawton, Christopher, 2008. The war on returns. Wall Street J. 8 (1).
    Li, Xinxin, Hitt, Lorin M., 2008. Self-selection and information role of online product
    reviews. Inf. Syst. Res. 19 (4), 456–474.
    Li, Yongjian, Lei, Xu., Li, Dahui, 2013. Examining relationships between the return
    policy, product quality, and pricing strategy in online direct selling. Int. J. Prod.
    Econ. 144 (2), 451–460.
    Lutz, Nancy A., 1989. Warranties as signals under consumer moral hazard. RAND J.
    Econ. 20 (2), 239–255.
    Mayzlin, Dina, 2006. Promotional chat on the internet. Market. Sci. 25 (2), 155–163.
    Minnema, Alec, Tammo, H.A., Bijmolt, Sonja Gensler, Thorsten Wiesel, 2016. To
    keep or not to keep: Effects of online customer reviews on product returns, J.
    Retailing, p. forthcoming.
    Mukhopadhyay, Samar K., Setoputro, Robert, 2005. Optimal return policy and
    modular design for build-to-order products. J. Oper. Manage. 23 (5), 496–506.
    Padmanabhan, V., Png, I.P.L., 1997. Manufacturer’s returns policies and retail
    competition. Market. Sci. 16 (1), 81–94.
    Roselius, Ted, 1971. Consumer rankings of risk reduction methods. J. Market. 35 (1),
    56–61.
    Sahoo, Nachiketa, Chrysanthos Dellarocas, Shuba Srinivasan, 2016. The impact of
    online product reviews on product returns, MSI working paper series.
    Shulman, Jeffrey D., Coughlan, Anne T., Canan Savaskan, R., 2010. Optimal reverse
    channel structure for consumer product returns. Market. Sci. 29 (6), 1071–1085.
    Sydnor, Justin, 2010. (over) insuring modest risks. Am. Econ. J. 2 (4), 177–199.
    Tsay, Andy A., Agrawal, Narendra, 2000. Channel dynamics under price and service
    competition. Manuf. Service Oper. Manage. 2 (4), 372–391.
    Tversky, Amos, Kahneman, Daniel, 1992. Advances in prospect theory: cumulative
    representation of uncertainty. J. Risk Uncertainty 5 (4), 297–323.
    Yang, Shuang, 2012. Customers’cognition value and analysis of return freight
    insurance. J. Insurance Professional College 26 (3), 21–23.
    Zhang, Dayong, Cai, Jing, Dickinson, David G., Kutan, Ali M., 2016. Non-performing
    loans, moral hazard and regulation of the chinese commercial banking system.
    J. Banking Finance 63, 48–60.
    Zhang, Meimei, Hu, Hongwei, 2013. Research on price model of back freight risk
    based on the svm. Soft Sci. 27 (7), 128–132.

A picture is worth a thousand words: Translating product reviews into a product positioning map

Moon S, Kamakura W, (2017), A picture is worth a thousand words: Translating product reviews into a product positioning map, International Journal of Research in Marketing, Volume 34, Issue 1, March 2017, Pages 265-285

https://www.sciencedirect.com/science/article/abs/pii/S016781161630074X

Mots clés : Avis de produits en ligne, Carte de positionnement du produit, Exploration de texte, Psychométrie, Découvrir les produits, Segmentation des consommateurs

Résumé : Les avis sur les produits deviennent omniprésents sur le Web, ce qui représente une riche source d’informations pour les consommateurs sur un large éventail de catégories de produits. Surtout, un avis de produit reflète non seulement la perception et la préférence pour un produit, mais aussi l’acuité, le parti pris et le style d’écriture de la critique. Cet aspect a été négligé dans des études antérieures qui ont tiré des conclusions sur les marques à partir des critiques de produits en ligne. Notre cadre combine des techniques d’exploration de texte basées sur l’apprentissage d’ontologie et des techniques psychométriques pour traduire les critiques de produits en ligne en une carte de positionnement de produit, tout en tenant compte des réponses idiosyncrasiques et des styles d’écriture des critiques individuels ou d’un nombre gérable de groupes de critiques (c.-à-d., Les méta-critiques). Nos illustrations empiriques utilisant des critiques de vins et d’hôtels montrent qu’une revue de produit révèle des informations sur le critique (pour l’exemple de vin avec un petit nombre de critiques d’experts) ou le méta-critique (pour l’exemple d’hôtel avec un nombre énorme de critiques réduit à un nombre gérable de méta-évaluateurs), ainsi que sur le produit examiné.

Grandes lignes :

  • Les avis sur les produits deviennent omniprésents sur le Web.
  • Un avis de produit reflète non seulement la perception et la préférence pour un produit, mais aussi l’acuité, le parti pris et le style d’écriture de la critique.

Aggarwal, P., Vaidyanathan, R., & Venkatesh, A. (2009). Using lexical semantic analysis to derive online brand positions: An application to retail marketing research.
Journal of Retailing, 85(2), 145–158.
Alba, J. W., & Hutchinson, J. W. (1987). Dimensions of consumer expertise. Journal of Consumer Research, 13(4), 411–454.
Anderson, C. K. (2012). The impact of social media on lodging performance. Cornell Hospitality Report, 12(15), 6–11.
Archak, N., Ghose, A., & Ipeirotis, P. G. (2011). Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), 1485–1509.
Buitelaar, P., Cimiano, P., & Magnini, B. (2005). Ontology learning from text: Methods, evaluation and applications. IOS Press.
Camacho, N., De Jong, M., & Stremersch, S. (2014). The effect of customer empowerment on adherence to expert advice. International Journal of Research in Marketing,
31(3), 293–308.
Carroll, J. D., & Green, P. E. (1997). Psychometric methods in marketing research: Part II. Multidimensional scaling. Journal of Marketing Research, 34(May), 193–204.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(August), 345–354.
Cimiano, P. (2006). Ontology learning and population from text: Algorithms, valuation and applications. Germany: Springer.
Decker, R., & Trusov, M. (2010). Estimating aggregate consumer preferences from online product reviews. International Journal of Research in Marketing, 27(4),
293–307.
DeSarbo, W. S., Park, J., & Rao, V. R. (2011). Deriving joint space positioning maps from consumer preference ratings. Marketing Letters, 22(1), 1–14.
Faure, C., & Natter, M. (2010). New metrics for evaluating preference maps. International Journal of Research in Marketing, 27(3), 261–270.
Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press.
Ghose, A., Ipeirotis, P. G., & Li, B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing
Science, 31(3), 493–520.
Holbrook, M. B., Lacher, K. T., & LaTour, M. S. (2006). Audience judgments as the potential missing link between expert judgments and audience appeal: An illustration
based on musical recordings of “My Funny Valentine,”. Journal of the Academy of Marketing Science, 34(1), 8–18.
Kamakura, W. A., & Wedel, M. (2000). Factor analysis and missing data. Journal of Marketing Research, 37(4), 490–498.
Kamakura, W. A., Basuroy, S., & Boatwright, P. (2006). Is silence golden? An inquiry into the meaning of silence in professional product evaluations. Quantitative
Marketing and Economics, 4(2), 119–141.
Kostyra, D. S., Reiner, J., Natter, M., & Klapper, D. (2016). Decomposing the effects of online customer reviews on brand, price, and product attributes. International
Journal of Research in Marketing, 33(1), 11–26.
Lau, K. -N., Lee, K. -H., Lam, P. -Y., & Ho, Y. (2001). Web-site marketing: For the travel-and-tourism industry. The Cornell Hotel and Restaurant Administration Quarterly,
42(6), 55–62.
Lawrence, R. D., Almasi, G. S., & Rushmeier, H. E. (1999). A scalable parallel algorithm for self-organizing maps with applications to sparse data mining problems. Data
Mining and Knowledge Discovery, 3(2), 171–195.
Lee, T. Y., & Bradlow, E. T. (2011). Automated marketing research using online customer reviews. Journal of Marketing Research, 48(5), 881–894.
Liebermann, Y., & Flint-Goor, A. (1996). Message strategy by product-class type: A matching model. International Journal of Research in Marketing, 13(3), 237–249.
Lilien, G., & Rangaswamy, A. (2006). Marketing engineering (Revised 2nd ed.). Bloomington, IN: Trafford Publishing.
Liu, Y. (2006). Word-of-mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74–89.
Maedche, A. (2002). Ontology learning for the semantic web. The Kluwer international series in engineering and computer science. New York: Springer Science+
Business Media.
Moon, S., Park, Y., & Kim, Y. S. (2014). The impact of text product reviews on sales. European Journal of Marketing, 48(11/12), 2176–2197.
Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business: Market structure surveillance through text mining. Marketing Science, 31(3),
521–543.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.
Pazienza, M., Pennacchiotti, M., & Zanzotto, F. M. (2005). Terminology extraction: An analysis of linguistic and statistical approaches. Knolwedge mining. Of the series
studies in fuzziness and soft computing, Vol. 185. (pp. 255–279).
Peck, J., & Childers, T. L. (2003). Individual differences in haptic information processing: The “need for touch” scale. Journal of Consumer Research, 30(3), 430–442.
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
Staab, S., & Studer, R. (2004). Handbook on ontologies. International handbooks on information systems. Springer.
Stone, H., & Sidel, J. L. (2004). Sensory evaluation practices (3rd ed.). Food science and technology, international series. California: Elsevier Academic Press.
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation. Journal of
Marketing Research, 51(August), 463–479.
Wedel, M., & Kamakura, W. A. (2001). Factor analysis with mixed observed and latent variables in the exponential family. Psychometrika, 66(4), 515–530.

A machine learning approach to product review disambiguation based on function, form and behavior classification

Singh A, Tucker C (2017) A machine learning approach to product review disambiguation based on function, form and behavior classification, Decision Support Systems, Volume 97, May 2017, Pages 81-91

https://www.sciencedirect.com/science/article/pii/S0167923617300477

Mots clés : Apprentissage automatique, Extraction d’attribut de produit, Exploration de texte, Avis sur les produits, La conception des produits

Résumé : Les évaluations de produits en ligne se sont révélées être une source d’informations viable pour aider les clients à prendre des décisions d’achat éclairées. Dans de nombreux cas, les utilisateurs de plateformes d’achat en ligne ont la possibilité d’évaluer les produits sur une échelle numérique et de fournir également des commentaires textuels concernant un produit acheté. Au-delà de l’utilisation de plateformes de revue de produits en ligne comme systèmes d’aide à la décision client, cette source de données riche en informations pourrait également aider les concepteurs qui cherchent à augmenter les chances de succès de leurs produits sur le marché grâce à une meilleure compréhension des besoins du marché. Cependant, la taille et la complexité croissantes des produits sur le marché rendent difficile l’analyse manuelle de ces données. Les informations obtenues à partir de ces sources, si elles ne sont pas exploitées correctement, risquent de déformer le véritable succès / échec d’un. L’objectif de cet article est triple: i) proposer une approche d’apprentissage automatique qui dissipe les commentaires des clients en ligne en les classant en l’une des trois caractéristiques directes du produit (c.-à-d. La forme ,fonction ou comportement ) et deux caractéristiques indirectes du produit (c.-à-d. service et autre ), ii) pour découvrir l’ algorithme d’apprentissage automatique qui donne les résultats les plus élevés et les plus généralisables pour atteindre l’objectif i) et iii) pour quantifier la corrélation entre les évaluations de produits et les évaluations directes et les caractéristiques indirectes du produit. Une étude de cas impliquant des données d’examen pour des produits extraits de sites Web de commerce électronique est présentée pour démontrer la validité de la méthode proposée. Une approche de validation multicouche est présentée pour explorer la généralisation de la méthode proposée. Les contributions scientifiques de ce travail ont le potentiel de transformer la manière dont les concepteurs de produits et les clients intègrent les avis sur les produits dans leurs processus décisionnels en quantifiant la relation entre les avis sur les produits et les caractéristiques des produits.

Grandes lignes :

  • Les évaluations de produits en ligne sont une source d’informations viable pour aider les clients à prendre des décisions d’achat.
  • Elles peuvent aider les concepteurs qui cherchent à augmenter les chances de succès de leurs produits.
  • Classification par apprentissage automatique de la forme, de la fonction et du comportement du produit
  • Précisions de classification d’apprentissage automatique de plus de 82% pour le modèle de base
  • Corrélation entre les évaluations de produits et la forme, la fonction et le comportement des produits
  • La corrélation entre la forme des produits et les notes des produits a donné une valeur de 0,934

[1] N.M.A. Al-Othman, The relationship between online reading rates and performance
on proficiency tests, The Reading Matrix 3 (2003).
[2] N. Archak, A. Ghose, P.G. Ipeirotis, Deriving the pricing power of product features by
mining consumer reviews, Management Science 57 (2011) 1485–1509.
[3] K.J. Arrow, Social Choice and Individual Values, Yale University Press, 2012.
[4] S. Asur, B.A. Huberman, Predicting the future with social media, Web Intelligence
and Intelligent Agent Technology (WI-IAT)2010 IEEE/WIC/ACM International Conference on. IEEE 2010, pp. 492–499.
[5] X. Bai, Predicting consumer sentiments from online text, Decision Support Systems
50 (2011) 732–742.
[6] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res. 3
(2003) 993–1022.
[7] A. Brew, D. Greene, P. Cunningham, Using Crowdsourcing and Active Learning to
Track Sentiment in Online Media, in: Proceedings of the 2010 Conference on ECAI
2010: 19th European Conference on Artificial Intelligence, IOS Press, Amsterdam,
The Netherlands, The Netherlands, 2010 145–150.
[8] K. Dave, S. Lawrence, D.M. Pennock, Mining the peanut gallery: opinion extraction
and semantic classification of product reviews, Proceedings of the 12th International Conference on World Wide Web, ACM 2003, pp. 519–528.
[9] T. Fawcett, ROC graphs: notes and practical considerations for researchers, Mach.
Learn. 31 (2004) 1–38.
[10] O. Feiguina, G. Lapalme, Query-based summarization of customer reviews, Advances
in Artificial Intelligence, Springer 2007, pp. 452–463.
[11] C. Forman, A. Ghose, B. Wiesenfeld, Examining the relationship between reviews
and sales: the role of reviewer identity disclosure in electronic markets, Inf. Syst.
Res. 19 (2008) 291–313.
[12] M. Galkin, D. Mouromtsev, S. Auer, Identifying web tables: supporting a neglected
type of content on the web, International Conference on Knowledge Engineering
and the Semantic Web, Springer 2015, pp. 48–62.
[13] R. Ghani, K. Probst, Y. Liu, M. Krema, A. Fano, Text mining for product attribute extraction, ACM SIGKDD Explorations Newsletter 8 (2006) 41–48.
[14] A. Ghose, P.G. Ipeirotis, Designing novel review ranking systems: predicting the usefulness and impact of reviews, Proceedings of the Ninth International Conference on
Electronic Commerce, ACM 2007, pp. 303–310.
[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA
data mining software: an update, ACM SIGKDD Explorations Newsletter 11 (2009)
10–18.
[16] G.A. Hazelrigg, The implications of Arrow’s impossibility theorem on approaches to
optimal engineering design, J. Mech. Des. 118 (1996) 161–164.
[17] B. He, C. Macdonald, J. He, I. Ounis, An effective statistical approach to blog post
opinion retrieval, Proceedings of the 17th ACM Conference on Information and
Knowledge Management, ACM 2008, pp. 1063–1072.
[18] S.S. Htay, K.T. Lynn, Extracting product features and opinion words using pattern
knowledge in customer reviews, Sci. World J. 2013 (2013).
[19] M. Hu, B. Liu, Mining opinion features in customer reviews, AAAI 2004, pp. 755–760.
[20] N. Hu, I. Bose, N.S. Koh, L. Liu, Manipulation of online reviews: an analysis of ratings,
readability, and sentiments, Decis. Support. Syst. 52 (2012) 674–684, http://dx.doi.
org/10.1016/j.dss.2011.11.002.
[21] Import.io|Web Data Platform & Free Web Scraping Tool [WWW Document], n.d.
Import.io. URL https://www.import.io/ (accessed 10.10.16).
[22] Y. Jiang, J. Shang, Y. Liu, Maximizing customer satisfaction through an online recommendation system: a novel associative classification model, Decis. Support Systems
48 (2010) 470–479.
[23] S.W. Kang, C. Tucker, An automated approach to quantifying functional interactions
by mining large-scale product specification data, J. Eng. Des. 0 (2015) 1–24, http://
dx.doi.org/10.1080/09544828.2015.1083539.
[24] S.-M. Kim, P. Pantel, T. Chklovski, M. Pennacchiotti, Automatically assessing review
helpfulness, Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics 2006, pp. 423–430.
[25] S. Kotsiantis, Supervised Machine Learning: A Review of Classification Techniques,
2007.
[26] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical data,
Biometrics (1977) 159–174.
[27] R.Y. Lau, C. Li, S.S. Liao, Social analytics: learning fuzzy product ontologies for aspectoriented sentiment analysis, Decis. Support. Syst. 65 (2014) 80–94.
[28] A.J. Lee, F.-C. Yang, C.-H. Chen, C.-S. Wang, C.-Y. Sun, Mining perceptual maps from
consumer reviews, Decis. Support Syst. 82 (2016) 12–25.
[29] A.J.T. Lee, F.-C. Yang, C.-H. Chen, C.-S. Wang, C.-Y. Sun, Mining perceptual maps from
consumer reviews, Decis. Support. Syst. 82 (2016) 12–25, http://dx.doi.org/10.1016/
j.dss.2015.11.002.
[30] N. Lei, S.K. Moon, A decision support system for market-driven product positioning
and design, Decis. Support. Syst. 69 (2015) 82–91, http://dx.doi.org/10.1016/j.dss.
2014.11.010.
[31] B. Liu, M. Hu, J. Cheng, Opinion Observer: Analyzing and Comparing Opinions on the
Web, Proceedings of the 14th International Conference on World Wide WebACM
2005, pp. 342–351.
[32] H.-M. Lu, Detecting short-term cyclical topic dynamics in the user-generated content and news, Decis. Support. Syst. 70 (2015) 1–14.
[33] S.M. Mudambi, D. Schuff, What Makes a Helpful Review? A Study of Customer Reviews on Amazon.com (SSRN Scholarly Paper No. ID 2175066), Social Science Research Network, Rochester, NY, 2010.
[34] D.L. Olson, D. Delen, Y. Meng, Comparative analysis of data mining methods for
bankruptcy prediction, Decis. Support. Syst. 52 (2012) 464–473.
[35] M.F. Porter, An algorithm for suffix stripping, Program 14 (1980) 130–137.
[36] A. Reyes, P. Rosso, Making objective decisions from subjective data: detecting irony
in customer reviews, Decis. Support. Syst. 53 (2012) 754–760.
[37] S. Rose, N. Hair, M. Clark, Online customer experience: a review of the business-toconsumer online purchase context, Int. J. Manag. Rev. 13 (2011) 24–39.
[38] M.A. Rosenman, J.S. Gero, Purpose and function in design: from the socio-cultural to
the techno-physical, Des. Stud. 19 (1998) 161–186.
[39] N. Salkind, Encyclopedia of Measurement and Statistics, SAGE Publications, Inc.,
2455 Teller Road, Thousand Oaks California 91320 United States, 2007.
[40] A.S. Singh, C.S. Tucker, Investigating the heterogeneity of product feature preferences mined using online product data streams, ASME 2015 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2015 (p. V02BT03A020-
V02BT03A020).
[41] S. Tuarob, C.S. Tucker, Quantifying product favorability and extracting notable product features using large scale social media data, J. Comput. Inf. Sci. Eng. 15 (2015)
031003.
[42] S. Tuarob, C.S. Tucker, Automated discovery of lead users and latent product features
by mining large scale social media networks, J. Mech. Des. 137 (2015) 071402.
[43] C. Tucker, H. Kim, Predicting emerging product design trend by mining publicly
available customer review data, DS 68-6: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society Through Engineering
Design, Vol. 6: Design Information and Knowledge, Lyngby/Copenhagen, Denmark,
15.-19.08. 2011, 2011.
[44] L. Wang, B.D. Youn, S. Azarm, P.K. Kannan, Customer-driven product design selection using web based user-generated content, in: ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 2011 405–419.
[45] Y. Yu, W. Duan, Q. Cao, The impact of social and conventional media on firm equity
value: a sentiment analysis approach, Decis. Support. Syst. 55 (2013) 919–926.
[46] L. Zhuang, F. Jing, X.-Y. Zhu, Movie review mining and summarization, Proceedings
of the 15th ACM International Conference on Information and Knowledge Management, ACM 2006, pp. 43–50.

The effect of manipulating online product reviews, Journal of Business Research

Zhuang W, Cui G, Peng L, (2018), Manufactured opinions: The effect of manipulating online product reviews, Journal of Business Research, Volume 87, June 2018, Pages 24-35

https://www.sciencedirect.com/science/article/abs/pii/S0148296318300912

Mots clés : Avis de produits en ligne, Manipulation, Soupçon, Persuasion, Commerce électronique

Résumé : Des recherches antérieures supposent que les consommateurs peuvent détecter et ignorer la manipulation des avis sur les produits en ligne ou sont inconscients de telles pratiques. Nous supposons que l’équilibre se produit en raison des signaux de manipulation, de la suspicion des consommateurs et de leur expertise. Notre analyse des données sur l’occupation des hôtels montre que l’effet de l’ajout d’avis positifs et de la suppression d’avis négatifs sur les ventes présente une courbe en U inversée. De plus, les marques faibles souffrent davantage d’un ajout excessif. Nos expériences en laboratoire montrent que l’ajout affecte l’intention d’achat du consommateur, mais il suscite également des soupçons, ce qui exerce un effet médiateur négatif. La suppression est plus déguisée et difficile à soupçonner. Les novices sont plus influencés par les manipulations que leurs homologues expérimentés. Un ajout excessif entraîne la méfiance des consommateurs et peut se retourner contre eux. La suppression exacerbe l’asymétrie d’information et entraîne une sélection défavorable, ce qui justifie la retenue et la réglementation.

Grandes lignes :

  • Un ajout excessif entraîne la méfiance des consommateurs et peut se retourner contre eux. 
  • La suppression est plus déguisée et difficile à soupçonner. 
  • La suppression exacerbe l’asymétrie d’information et entraîne une sélection défavorable, ce qui justifie la retenue et la réglementation.

Ahluwalia, R., & Burnkrant, R. E. (2004). Answering questions about questions: A persuasion knowledge perspective for understanding the effects of rhetorical questions.
Journal of Consumer Research, 31(1), 26–42.
Akerlof, G. A., & Shiller, R. J. (2015). Phishing for phools: The economics of manipulation
and deception. Princeton University Press.
Anderson, E. T., & Simester, D. I. (2014). Reviews without a purchase: Low ratings, loyal
customers, and deception. Journal of Marketing Research, 51(3), 249–269.
Anderson, M., & Magruder, J. (2012). Learning from the crowd: Regression discontinuity
estimates of the effects of an online review database. The Economic Journal, 122(563),
957–989.
Campbell, M. C., & Kirmani, A. (2000). Consumers’ use of persuasion knowledge: The
effects of accessibility and cognitive capacity on perception of an influence agent.
Journal of Consumer Research, 27(1), 69–83.
Chen, Y., Wang, Q., & Xie, J. (2011). Online social interactions: A natural experiment on
word of mouth versus observational learning. Journal of Marketing Research, 48(2),
238–254.
Cui, G., Lui, H. K., & Guo, X. (2012). The effect of online consumer reviews on new
product sales. International Journal of Electronic Commerce, 17(1), 39–57.
Darke, P. R., & Ritchie, R. J. B. (2007). The defensive consumer: Advertising deception,
defensive processing, and distrust. Journal of Marketing Research, 44(1), 114–127.
Dellarocas, C. (2006). Strategic manipulation of internet opinion forums: Implications for
consumers and firms. Management Science, 52(10), 1577–1593.
Dellarocas, C., Zhang, M. X., & Awad, N. F. (2007). Exploring the value of online product
reviews in forecasting sales: The case of motion pictures. Journal of Interactive
Marketing, 21(4), 23–45.
Einwiller, S. A., Fedorikhin, A., Johnson, A. R., & Kamins, M. A. (2006). Enough is enough! When identification no longer prevents negatve corporate associations. Journal
of the Academy of Marketing Science, 34(2), 185–194.
Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of
Business Research, 68(6), 1261–1270.
Finkle, J.. The emerging ‘Fake Fan’ economy. (2013). Retrieved from http://www.
businessspectator.com.au/article/2013/8/19/technology/emerging-fake-faneconomy (accessed 18 May 2014).
Friestad, M., & Wright, P. (1994). The persuasion knowledge model: How people cope
with persuasion attempts. Journal of Consumer Research, 21(1), 1–31.
Fulmer, I. S., Barry, B., & Long, D. A. (2009). Lying and smiling: Informational and
emotional deception in negotiation. Journal of Business Ethics, 88(4), 691–709.
Gössling, S. C., Hall, M., & Andersson, A.-C. (2018). The manager’s dilemma: A conceptualization of online review manipulation strategies. Current Issues in Tourism,
21(5), 484–503.
Hayes, A. F., Preacher, K. J., & Myers, T. A. (2011). Mediation and the estimation of
M. Zhuang et al. Journal of Business Research 87 (2018) 24–35
34
indirect effects in political communication research. In E. P. Bucy, & R. L. Holbert
(Eds.). Sourcebook for political communication research: Methods, measures, and analytical techniques (pp. 434–465). New York: Routledge.
Ho-Dac, N. N., Carson, S. J., & Moore, W. L. (2013). The effects of positive and negative
online customer reviews: Do brand strength and category maturity matter? Journal of
Marketing, 77(6), 37–53.
Hu, N., Bose, I., Gao, Y., & Liu, L. (2011). Manipulation in digital word-of-mouth: A
reality check for book reviews. Decision Support Systems, 50(3), 627–635.
Hu, N., Bose, I., Koh, N. S., & Liu, L. (2012). Manipulation of online reviews: An analysis
of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674–684.
Hu, N., Liu, L., & Sambamurthy, V. (2011). Fraud detection in online consumer reviews.
Decision Support Systems, 50(3), 614–626.
Jain, S. P., & Posavac, S. S. (2001). Prepurchase attribute verifiability, source credibility,
and persuasion. Journal of Consumer Psychology, 11(3), 169–180.
Jindal, N., & Liu, B. (2008). Opinion spam and analysis. Proceeding of International
Conference on Web Search and Data Mining, WSDM 08 (pp. 219–230). California:
Stanford University.
Kirmani, A. (1990). The effect of perceived advertising costs on brand perceptions.
Journal of Consumer Research, 17(2), 160–171.
Kirmani, A., & Zhu, J. R. (2007). Vigilant against manipulation: The effects of regulatory
focus on the use of persuasion knowledge. Journal of Marketing Research, 44(4),
688–701.
Lappas, T., Sabnis, G., & Valkanas, G. (2016). The impact of fake positive reviews on
online visibility: A vulnerability assessment of the hotel industry. Information Systems
Research, 27(4), 940–961.
Luca, M., & Zervas, G. (2016). Fake it till you make it: Reputation, competition, and Yelp
review fraud. Management Science, 62(12), 3412–3427.
Mayzlin, D. (2006). Promotional chat on the internet. Marketing Science, 25(2), 155–163.
Mayzlin, D., Dover, Y., & Chevalier, J. (2014). Promotional reviews: An empirical investigation of online review manipulation. American Economic Review, 104(8),
2421–2455.
McCornack, S. A., & Levine, T. R. (1990). When lies are uncovered: Emotional and relational outcomes of discovered deception. Communication Monographs, 57(2),
119–138.
Moorthy, S., & Hawkins, S. A. (2005). Advertising repetition and quality perception.
Journal of Business Research, 58(3), 354–360.
Morrison, P.. The Yelp wars: False reviews, slander and anti-SLAPP: What’s ethical in online
reviewing. (2011). Retrieved from http://www.scpr.org/programs/patt-morrison/
2011/08/25/20426/yelpamazonfakereviewcitysearchtripadvisorantislapp (Accessed
25 August 2013).
Northrup, L. (2009). Academic publisher pays professors for shill Amazon reviews.
Retrieved from http://consumerist.com/5313215/academic-publisher-paysprofessors-for-shill-amazon-reviews, Accessed date: 31 July 2009.
Pullig, C., Netemeyer, R. G., & Biswas, A. (2006). Attitude basis, certainty, and challenge
alignment: A case of negative brand publicity. 34(4), 528–542.
Quipp, J.. 50+ sites to help you bury negative posts about you or your company!. (2008).
Retrieved from http://www.searchenginepeople.com/blog/50-sites-to-help-youbury-negative-posts-about-you-oryour-company.htm (Accessed 25 August 2014).
Reimer, T., & Benkenstein, M. (2016). When good WOM hurts and bad WOM gains: The
effect of untrustworthy online reviews. Journal of Business Research, 69(12),
5993–6001.
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative
consumer reviews on the web. Journal of Interactive Marketing, 21(4), 76–94.
Shu, S. B., & Carlson, K. A. (2014). When three charms but four alarms: Identifying the
optimal number of claims in persuasion settings. Journal of Marketing, 78(1),
127–139.
Smith, D., Menon, S., & Sivakumar, K. (2005). Online peer and editorial recommendations, trust, and choice in virtual markets. Journal of Interactive Marketing, 19(3),
15–37.
Snijders, T., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Sage Publications.
Stiglitz, J. E. (2002). Information and the change in the paradigm in economics. The
American Economic Review, 92(3), 460–501.
Teixeira, T., Picard, R., & Kaliouby, R. (2014). Why, when and how much to entertain
consumers in advertisements? A web-based facial tracking field study. Marketing
Science, 33(6), 809–827.
Walther, J., Van Der Heide, B., Hamel, L. M., & Shulman, K. C. (2009). Self-generated
versus other-generated statements and impressions in computer-mediated communication: A test of warranting theory using Facebook. Communication Research, 36(2),
229–253.

Learning to rank products based on online product reviews using a hierarchical deep neural network

Lee H, Hae Rim C, Lee D, (2019), Learning to rank products based on online product reviews using a hierarchical deep neural network, Electronic Commerce Research and Applications, 36.

https://www.sciencedirect.com/science/article/pii/S1567422319300511

Mots clés : Classement des produits, Avis de produits en ligne, Réseau neuronal profond hiérarchique

Résumé : Le classement des produits basé sur les évaluations de produits en ligne consiste à déduire les préférences relatives des utilisateurs entre différents produits en tant que variante de l’analyse des sentiments au niveau de l’entité. Malgré la relation complexe entre la préférence globale de l’utilisateur et les opinions diverses et individuelles, les approches existantes utilisent généralement des hypothèses empiriques sur les caractéristiques de sentiment des produits d’intérêt. Dans cet article, nous proposons une nouvelle approche unifiée pour apprendre à classer les produits en fonction des critiques de produits en ligne. Contrairement aux approches existantes, il utilise des techniques d’apprentissage approfondi pour extraire la représentation de révision latente de haut niveau qui contient les informations les plus sémantiques dans le processus d’apprentissage. Pour cette approche, nous étendons le réseau d’attention hiérarchique récemment proposé pour opérer dans le domaine du classement. Ce réseau apprend de manière hiérarchique les représentations optimales des fonctionnalités des produits et leurs avis grâce à l’utilisation d’encodeurs à deux niveaux basés sur l’attention. Pour construire un modèle de classement plus avancé, plusieurs fonctionnalités ont été ajoutées pour donner suffisamment d’informations sur les préférences relatives des utilisateurs, et deux fonctions représentatives de perte de classement, RankNet et ListNet, ont été appliquées. De plus, nous démontrons que ce réseau surpasse les méthodes existantes de prédiction du classement des ventes sur la base des évaluations de produits en ligne.


Appel, O., Chiclana, F., Carter, J., Fujita, H., 2016. A hybrid approach to the sentiment
analysis problem at the sentence level. Knowl.-Based Syst. 108, 110–124. https://doi.
org/10.1016/j.knosys.2016.05.040.
Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural machine translation by jointly learning to
align and translate. arXiv:1409.0473.
Bashir, S., Afzal, W., Baig, A.R., 2016. Opinion-based entity ranking using learning to
rank. Appl. Soft Comput. 38, 151–163. https://doi.org/10.1016/j.asoc.2015.10.001..
URL: http://www.sciencedirect.com/science/article/pii/S156849461500616X.
Bickart, B., Schindler, R.M., 2001. Internet forums as influential sources of consumer
information. J. Interactive Market. 15, 31–40. https://doi.org/10.1002/dir.1014..
URL: http://www.sciencedirect.com/science/article/pii/S1094996801701843.
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.,

  1. Learning to rank using gradient descent. In: Proceedings of the 22nd international conference on Machine Learning. New York, NY, USA, pp. 89–96. https://doi.
    org/10.1145/1102351.1102363.
    Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H., 2007. Learning to rank: From pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on
    Machine Learning. New York, NY, USA, pp. 129–136. https://doi.org/10.1145/
    1273496.1273513.
    Chen, T., Xu, R., He, Y., Wang, X., 2017. Improving sentiment analysis via sentence type
    classification using bilstm-crf and cnn. Expert Syst. Appl. 72, 221–230. https://doi.
    org/10.1016/j.eswa.2016.10.065.. URL: http://www.sciencedirect.com/science/
    article/pii/S0957417416305929.
    Cooijmans, T., Ballas, N., Laurent, C., Alar Gülehre, Courville, A., 2016. Recurrent batch
    normalization. arXiv:1603.09025.
    Decker, R., Trusov, M., 2010. Estimating aggregate consumer preferences from online
    product reviews. Int. J. Res. Mark. 27https://doi.org/10.1016/j.ijresmar.2010.09.
    001.. URL: http://www.sciencedirect.com/science/article/pii/
    S0167811610000753.
    Dellarocas, C., Zhang, X.M., Awad, N.F., 2007. Exploring the value of online product
    reviews in forecasting sales: the case of motion pictures. J. Interactive Market. 21,
    23–45. https://doi.org/10.1002/dir.20087.
    Engonopoulos, N., Lazaridou, A., Paliouras, G., Chandrinos, K., 2011. Els: a word-level
    method for entity-level sentiment analysis. In: Proceedings of the International
    Conference on Web Intelligence, Mining and Semantics. ACM, New York, NY, USA.
    https://doi.org/10.1145/1988688.1988703. pp. 12:1–12:9.
    Fan, Z.P., Che, Y.J., Chen, Z.Y., 2017. Product sales forecasting using online reviews and
    historical sales data: a method combining the bass model and sentiment analysis. J.
    Business Res. 74, 90–100. https://doi.org/10.1016/j.jbusres.2017.01.010.. URL:
    http://www.sciencedirect.com/science/article/pii/S0148296317300231.
    Ganesan, K., Zhai, C., 2012. Opinion-based entity ranking. Inform. Retrieval 15, 116–150.
    https://doi.org/10.1007/s10791-011-9174-8.
    Gerani, S., Mehdad, Y., Carenini, G., Ng, R.T., Nejat, B., 2014. Abstractive summarization
    of product reviews using discourse structure. In: Proceedings of the 2014 Conference
    on Empirical Methods in Natural Language Processing (EMNLP). Association for
    Computational, Linguistics, Doha, Qatar, pp. 1602–1613. URL: http://www.aclweb.
    org/anthology/D14-1168.
    He, R., McAuley, J., 2016. Ups and downs: Modeling the visual evolution of fashion
    trends with one-class collaborative filtering. In: Proceedings of the 25th International
    Conference on World Wide Web, International World Wide Web Conferences Steering
    Committee, Republic and Canton of Geneva Switzerland, pp. 507–517. https://doi.
    org/10.1145/2872427.2883037.
    Hennig-Thurau, T., Gwinner, K.P., Walsh, G., Gremler, D.D., 2004. Electronic word-ofmouth via consumer-opinion platforms: what motivates consumers to articulate
    themselves on the internet? J. Interactive Market. 18, 38–52. https://doi.org/10.
    1002/dir.10073.. URL: http://www.sciencedirect.com/science/article/pii/
    Table 5
    Top 10 highly weighted tokens in the testing set for sampled categories.
    Categories Top 10 tokens
    Action Figures & Statues grandson, tattoo, tock, momma, equipped, pterodactyl, detachable, husky, grace
    Camera & Photo portable, films, recycled, powerfull, film-, 5-pack, zoom, handycam, focus, spruce
    Cell Phones console, pros-, oversized, evolutionary, maturity, realllly, clearance, excellent, snaps, resistant
    Kitchen & Dining chalkboard, gauze, flex, Christian, gripping, shiny, terrier, wide, shipment, mistral
    Skin Care embrace, gland, popularity, inspiration, highlight, boron, frizz, revise, 5 min, spot
    H.-C. Lee, et al. Electronic Commerce Research and Applications 36 (2019) 100874
    9
    S1094996804700961.
    Huang, Z., Xu, W., Yu, K., 2015. Bidirectional lstm-crf models for sequence tagging.
    arXiv:1508.01991.
    Jannach, D., Resnick, P., Tuzhilin, A., Zanker, M., 2016. Recommender systems — beyond
    matrix completion. Commun. ACM 59, 94–102. https://doi.org/10.1145/2891406.
    Jindal, N., Liu, B., 2006. Identifying comparative sentences in text documents. In:
    Proceedings of the 29th Annual International ACM SIGIR Conference on Research
    and Development in Information Retrieval. ACM, New York, NY, USA, pp. 244–251.
    https://doi.org/10.1145/1148170.1148215.
    Kessler, W., Kuhn, J., 2013. Detection of product comparisons – how far does an out-ofthe-box semantic role labeling system take you? In: Proceedings of the 2013
    Conference on Empirical Methods in Natural Language Processing Association for
    Computational Linguistics, Seattle, Washington, USA, pp. 1892–1897. URL: http://
    www.aclweb.org/anthology/D13-1194.
    Kim, Y., 2014. Convolutional neural networks for sentence classification. In: Proceedings
    of the 2014 Conference on Empirical Methods in Natural Language Processing
    (EMNLP). Association for Computational, Linguistics, Doha, Qatar, pp. 1746–1751.
    URL: http://www.aclweb.org/anthology/D14-1181.
    Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv:1412.6980.
    Liu, Q., Huang, H., Zhang, C., Chen, Z., Chen, J., 2013. Chinese comparative sentence
    identification based on the combination of rules and statistics. In: International
    Conference on Advanced Data Mining and Applicationspp. 300–310. https://doi.org/
    10.1007/978-3-642-53917-6_27.
    Liu, Y., 2006. Word of mouth for movies: its dynamics and impact on box office revenue.
    J. Marketing 70, 74–89. https://doi.org/10.1509/jmkg.70.3.74.
    Liu, Y., Bi, J.W., Fan, Z.P., 2017. Ranking products through online reviews: a method
    based on sentiment analysis technique and intuitionistic fuzzy set theory. Inform.
    Fusion 36, 149–161. https://doi.org/10.1016/j.inffus.2016.11.012.. URL: http://
    www.sciencedirect.com/science/article/pii/S1566253516301580.
    Liu, Y., Huang, X., An, A., Yu, X., 2007. Arsa: A sentiment-aware model for predicting
    sales performance using blogs. In: Proceedings of the 30th Annual International ACM
    SIGIR Conference on Research and Development in Information Retrieval. ACM, New
    York, NY, USA, pp. 607–614. https://doi.org/10.1145/1277741.1277845.
    Liu, Y., Huang, X., An, A., Yu, X., 2008. Modeling and predicting the helpfulness of online
    reviews. In: 2008 Eighth IEEE International Conference on Data Mining, IEEE, pp.
    443–452. https://doi.org/10.1109/ICDM.2008.94.. URL: https://ieeexplore.ieee.
    org/abstract/document/4781139.
    McAuley, J., Targett, C., Shi, Q., van den Hengel, A., 2015. Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR
    Conference on Research and Development in Information Retrieval. ACM, New York,
    NY, USA, pp. 43–52. https://doi.org/10.1145/2766462.2767755.
    Najmi, E., Hashmi, K., Malik, Z., Rezgui, A., Khan, H.U., 2015. Capra: a comprehensive
    approach to product ranking using customer reviews. Computing 97, 843–867.
    https://doi.org/10.1007/s00607-015-0439-8.
    Raffel, C., Ellis, D.P.W., 2015. Feed-forward networks with attention can solve some longterm memory problems. arXiv:1512.08756.
    Romeo, S., Da San Martino, G., Barrón-Cedeno, A., Moschitti, A., Belinkov, Y., Hsu, W.N.,
    Zhang, Y., Mohtarami, M., Glass, J., 2016. Neural attention for learning to rank
    questions in community question answering. In: Proceedings of COLING 2016, the
    26th International Conference on Computational Linguistics: Technical Papers.
    Association for Computational, Linguistics, New York, NY, USA, pp. 1734–1745.
    URL: http://www.aclweb.org/anthology/C/C16/C16-1163.pdf.
    Saumya, S., Singh, J.P., Baabdullah, A.M., Rana, N.P., Dwivedi, Y.K., 2018. Ranking
    online consumer reviews. Electron. Commer. Res. Appl. 29, 78–89. https://doi.org/
    10.1016/j.elerap.2018.03.008.. URL: http://www.sciencedirect.com/science/
    article/pii/S1567422318300358.
    Schneider, M.J., Gupta, S., 2016. Forecasting sales of new and existing products using
    consumer reviews: A random projections approach. Int. J. Forecast. 32, 243–256.
    https://doi.org/10.1016/j.ijforecast.2015.08.005.. URL: http://www.sciencedirect.
    com/science/article/pii/S0169207015001235.
    Song, Y., Wang, H., He, X., 2014. Adapting deep ranknet for personalized search. In:
    Proceedings of the 7th ACM International Conference on Web Search and Data
    Mining. ACM, New York, NY, USA, pp. 83–92. https://doi.org/10.1145/2556195.
    2556234.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout:
    A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
    1929–1958. URL: http://jmlr.org/papers/v15/srivastava14a.html.
    Sun, J., Long, C., Zhu, X., Huang, M., 2009. Mining reviews for product comparison and
    recommendation. In: Polibitspp. 33–40. https://doi.org/10.1145/1148170.1148215.
    Varathan, K.D., Giachanou, A., Crestani, F., 2017. Comparative opinion mining: a review.
    J. Assoc. Inform. Sci. Technol. 68, 811–829. https://doi.org/10.1002/asi.23716.
    Wang, B., Klabjan, D., 2017. An attention-based deep net for learning to rank. arXiv:1702.
    06106.
    Wang, J., Zhao, W.X., He, Y., Li, X., 2015. Leveraging product adopter information from
    online reviews for product recommendation. In: Ninth International AAAI Conference
    on Web and Social Mediapp. 464–472. URL: https://www.aaai.org/ocs/index.php/
    ICWSM/ICWSM15/paper/view/10475.
    Wang, L., Ling, W., 2016. Neural network-based abstract generation for opinions and
    arguments. arXiv:1606.02785.
    Ward, C.B., Choi, Y., Skiena, S., Xavier, E.C., 2011. Empath: A framework for evaluating
    entity-level sentiment analysis. In: 2011 8th International Conference Expo on
    Emerging Technologies for a Smarter Worldpp. 1–6. https://doi.org/10.1109/
    CEWIT.2011.6135866.
    Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.,
  2. Show, attend and tell: Neural image caption generation with visual attention.
    In: Bach, F., Blei, D. (Eds.), Proceedings of the 32nd International Conference on
    Machine Learning, PMLR Lille, France, pp. 2048–2057.
    Yagci, I.A., Das, S., 2014. Box office prediction based on microblog. Expert Syst. Appl. 41,
    1680–1689. https://doi.org/10.1016/j.eswa.2013.08.065.
    Yagci, I.A., Das, S., 2018. Measuring design-level information quality in online reviews.
    Electron. Commer. Res. Appl. 30, 102–110. https://doi.org/10.1016/j.elerap.2018.
    05.010.
    Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E., 2016. Hierarchical attention
    networks for document classification. In: Proceedings of the 2016 Conference of the
    North American Chapter of the Association for Computational Linguistics: Human
    Language Technologies Association for Computational Linguistics, San Diego,
    California, pp. 1480–1489. URL: http://www.aclweb.org/anthology/N16-1174.
    Yu, J., Zha, Z.J., Wang, M., Chua, T.S., 2011. Aspect ranking: Identifying important
    product aspects from online consumer reviews. In: Proceedings of the 49th Annual
    Meeting of the Association for Computational Linguistics: Human Language
    Technologies, vol. 1. Association for Computational Linguistics, Stroudsburg, PA,
    USA, pp. 607–614. URL: http://dl.acm.org/citation.cfm?id=2002472.2002654.
    Zhang, K., Cheng, Y., Liao, W.K., Choudhary, A., 2011. Mining millions of reviews: A
    technique to rank products based on importance of reviews. In: Proceedings of the
    13th International Conference on Electronic Commerce. ACM, New York, NY, USA.
    https://doi.org/10.1145/2378104.2378116. pp. 12:1–12:8.
    Zhang, K., Narayanan, R., Choudhary, A., 2010. Voice of the customers: Mining online
    customer reviews for product feature-based ranking. In: Proceedings of the 3rd
    Wonference on Online Social Networks USENIX Association, Berkeley, CA, USA. pp.
    11–11. URL: http://dl.acm.org/citation.cfm?id=1863190.1863201.
    Zhang, Z., Guo, C., Goes, P., 2013. Product comparison networks for competitive analysis
    of online word-of-mouth. ACM Trans. Manage Inf. Syst. 3, 20:1–20:22. https://doi.
    org/10.1145/2407740.2407744.
    Zheng, L., Noroozi, V., Yu, P.S., 2017. Joint deep modeling of users and items using
    reviews for recommendation. In: Proceedings of the Tenth ACM International
    Conference on Web Search and Data Mining. ACM, New York, NY, USA, pp. 425–434.
    https://doi.org/10.1145/3018661.3018665.
    Zhu, F., Zhang, X.M., 2010. Impact of online consumer reviews on sales: The moderating
    role of product and consumer characteristics. J. Marketing 74, 133–148. https://doi.
    org/10.1509/jmkg.74.2.133. DOI: 10.1509/jmkg.74.2.133.

Effect of online product reviews on third parties’ selling on retail platforms

Song W, Li W, Geng S, (2020), Effect of online product reviews on third parties’ selling on retail platforms,  Electronic Commerce Research and Applications, 39.

https://www.sciencedirect.com/science/article/pii/S1567422319300778

Mots clés : Coopétition, Avis de produits en ligne, Effet plateforme, Vendeurs tiers, Plateforme de vente au détail

Résumé : Les détaillants en ligne ouvrent leurs plateformes pour inviter des vendeurs tiers à vendre directement sur leurs plateformes pour des commissions. Étant donné que la plupart des consommateurs prennent des décisions d’achat en utilisant les avis de produits en ligne comme référence, nous développons un modèle de théorie des jeux pour explorer l’impact des avis sur la décision d’un vendeur tiers de vendre sur une plateforme de vente au détail ouverte et sur le profit du détaillant de la plateforme. Sur la base de deux attributs de produit – qualité et ajustement – nous distinguons deux cas, la qualité domine l’ajustement et l’ajustement domine la qualité. Nous constatons que, dans le cadre d’avis symétriques (c.-à-d. D’avis ne favorisant ni le produit du détaillant ni celui d’un tiers), des avis plus élevés homogénéisent les produits, intensifiant ainsi la concurrence entre le détaillant et le tiers dans les domaines où la qualité domine. Cependant, même dans le cadre d’avis asymétriques, le tiers ne peut être incité à vendre sur la plateforme de vente au détail que si l’on considère la qualité des systèmes de révision du détaillant, ce qui peut entraîner un effet de plateforme sur les avis. L’effet de plateforme renforce l’importance des avis, de sorte qu’il puisse élargir la différenciation des produits créée par les avis asymétriques. En particulier, lorsque l’effet de plateforme et l’asymétrie des avis sont suffisamment élevés, le détaillant peut non seulement inciter le tiers à vendre sur sa plateforme, mais également bénéficier à la fois de la qualité domine l’ajustement et de l’ajustement domine la qualité.

Grandes lignes :

  • Dans le cadre d’avis symétriques, des avis plus élevés homogénéisent les produits, intensifiant ainsi la concurrence entre le détaillant et le tiers
  • L’effet de plateforme renforce l’importance des avis

La qualité domine l’ajustement et l’ajustement domine la qualité


Abhishek, V., Jerath, K., Zhang, Z. John, 2016. Agency selling or reselling? Channel
structures in electronic retailing. Manage. Sci. 62 (8), 2259–2280.
Adner, R., Chen, J., Zhu, F., 2019. Frenemies in platform markets: Heterogeneous profit
foci as drivers of compatibility decisions. Manage. Sci Forthcoming.
Anderson, E.W., 1998. Customer satisfaction and word of mouth. J. Service Res. 1 (1),
5–17.
Archak, Nikolay, Ghose, Anindya, Ipeirotis, Panagiotis G., 2011. Deriving the pricing
power of product features by mining consumer reviews. Manage. Sci. 57 (8),
1485–1509.
Chen, J., Guo, Z., 2016. New media advertising and retail platform openness. Working
Paper.
Chen, Y., Xie, J., 2008. Online consumer review: Word-of-mouth as a new element of
marketing communication mix. Manage. Sci. 54 (3), 477–491.
Chevalier, Judith A., Mayzlin, Dina, 2006. The effect of word of mouth on sales: Online
book reviews. J. Mark. Res. 43 (3), 345–354.
Dellarocas, Chrysanthos, 2006. Strategic manipulation of internet opinion forums:
Implications for consumers and firms. Manage. Sci. 52 (10), 1577–1593.
Forman, Chris, Ghose, Anindya, Wiesenfeld, Batia, 2008. Examining the relationship
between reviews and sales: The role of reviewer identity disclosure in electronic
markets. Inform. Syst. Res. 19 (3), 291–313.
Geng, S., Li, W., Qu, X., Chen, L., 2017. Design for the pricing strategy of return-freight
insurance based on online product reviews. Electron. Commer. Res. Appl. 25, 16–28.
Gutt, Dominik, Neumann, Jürgen, Zimmermann, Steffen, Kundisch, Dennis, Chen,
Jianqing, 2019. Design of review systems—A strategic instrument to shape online
reviewing behavior and economic outcomes. J. Strategic Inform. Syst. 28 (2),
104–117.
Hagiu, Andrei, Wright, Julian, 2015. Marketplace or reseller? Manage. Sci. 61 (1),
184–203.
Hao, Lin, Fan, Ming, 2014. An analysis of pricing models in the electronic book market.
MIS Q. 38 (4), 1017–1032.
Hu, Nan, Pavlou, Paul A., Zhang, Jennifer, 2006. Can online reviews reveal a product’s
true quality? empirical findings and analytical modeling of online word-of-mouth
communication. In: Proceedings of the 7th ACM conference on Electronic commerce,
pp. 324–330.
Jerath, Kinshuk, John Zhang, Z., 2010. Store within a store. J. Mark. Res. 47 (4),
748–763.
Kwark, Young, Chen, Jianqing, Raghunathan, Srinivasan, 2014. Online product reviews:
Implications for retailer and competing manufacturers. Inform. Syst. Res. 25 (1),
93–110.
Kwark, Y., Chen, J., Raghunathan, S., 2017. Platform or wholesale? A strategic tool for
online retailers to benefit from third-party information. MIS Q. 41 (3), 763–785.
Kwark, Young, Chen, Jianqing, Raghunathan, Srinivasan, 2018. User-generated content
and competing firms’ product design. Manage. Sci. 64 (10), 4608–4628.
Li, X., Hitt, L.M., 2008. Self-selection and information role of online product reviews.
Inform. Syst. Res. 19 (4), 456–474.
Li, X., Hitt, L.M., Zhang, Z.J., 2011. Product reviews and competition in markets for
repeat purchase products. J. Manage. Inform. Syst. 27 (4), 9–41.
Mantin, Benny, Krishnan, Harish, Dhar, Tirtha, 2014. The strategic role of third-party
marketplaces in retailing. Prod. Operations Manage. 23 (11), 1937–1949.
Mayzlin, Dina, 2006. Promotional chat on the internet. Marketing Sci. 25 (2), 155–163.
Moe, Wendy W., Trusov, Michael, 2011. The value of social dynamics in online product
ratings forums. J. Mark. Res. 48 (3), 444–456.
Ryan, J.K., Sun, D., Zhao, X., 2012. Competition and coordination in online marketplaces.
Prod. Operations Manage. 21 (6), 997–1014.
Sun, Monic, 2012. How does variance of product ratings matter? Manage. Sci. 58 (4),
696–707.
Tan, Y. (Ricky), Carrillo, J.E., 2017. Strategic analysis of the agency model for digital
goods. Prod. Operations Manage. 26 (4), 724–741.
Tian, L., Vakaharia, A.J., Tan, Y. (Ricky), Xu, Y., 2018. Marketplace, reseller, or hybrid:
Strategic analysis of an emerging e-commerce model. Prod. Operations Manage. 27
(8), 1595–1610.
Zhu, Feng, Zhang, Xiaoquan, 2010. Impact of online consumer reviews on sales: the
moderating role of product and consumer characteristics. J. Marketing 74 (2),
133–148.

Experiential product framing and its influence on the creation of consumer reviews

Gallo I, Townsend I, Alegre I, (2019), Experiential product framing and its influence on the creation of consumer reviews, Journal of Business Research, 98, p177-p190.

https://www.sciencedirect.com/science/article/abs/pii/S0148296319300074

Mots clés : Marketing expérimental, Encadrement expérentiel, Critiques de produits, Le bouche à oreille

Résumé : Nous examinons comment le cadrage expérientiel, une tactique de marketing de plus en plus populaire, influence le comportement de révision des consommateurs. Le cadrage expérientiel est une stratégie de communication par laquelle les spécialistes du marketing décrivent un produit matériel comme s’il s’agissait d’une expérience, quelque chose que le consommateur vit, plutôt que de se concentrer sur les fonctionnalités et les attributs du produit. Sur la base de travaux antérieurs comparant la relation des consommateurs avec les produits à celle des expériences ainsi que des travaux antérieurs sur le comportement de révision des produits et le marketing expérientiel, nous émettons l’hypothèse que le cadrage expérientiel augmente la probabilité des consommateurs de revoir un produit. En effet, un examen des données ainsi que deux études en laboratoire montrent que le cadrage d’un produit comme une expérience est associé à une augmentation du bouche à oreille. Nos résultats soutiennent également notre processus proposé ; lorsque les produits sont conçus comme des expériences, les consommateurs les perçoivent comme plus personnels et auto-définis; cela augmente alors la probabilité pour le consommateur de s’engager dans l’activité d’auto-démonstration de l’examen des produits.

Grandes lignes :

  • Le cadrage expérientiel augmente la probabilité des consommateurs de revoir un produit.
  • Le cadrage d’un produit comme une expérience est associé à une augmentation du bouche à oreille
  • Lorsque les produits sont conçus comme des expériences, les consommateurs les perçoivent comme plus personnels

Albert, N., Merunka, D., & Valette-Florence, P. (2013). Brand passion: Antecedents and
consequences. Journal of Business Research, 66(7), 904–909.
Alexandrov, A., Lilly, B., & Babakus, E. (2013). The effects of social- and self-motives on
the intentions to share positive and negative word of mouth. Journal of the Academy of
Marketing Science, 41(5), 531–546.
Anderson, E. W. (1998). Customer satisfaction and word of mouth. Journal of Service
Research, 1(1), 5–17.
Babic Rosario, A., Sotgiu, F., De Valck, K., & Bijmolt, T. H. (2016). The effect of electronic
word of mouth on sales: A meta-analytic review of platform, product, and metric
factors. Journal of Marketing Research, 53(3), 297–318.
Belk, R. W. (1988). Possessions and the extended self. Journal of Consumer Research,
15(3), 139–168.
Berger, J. (2013). Contagious: Why things catch on. New York, NY: Simon and Schuster.
Berger, J. (2014). Word of mouth and interpersonal communication: A review and directions for future research. Journal of Consumer Psychology, 24(4), 586–607.
Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of
Marketing Research, 49(2), 192–205.
Brakus, J. J., Schmitt, B. H., & Zarantonello, L. (2009). Brand Experience: What is it? How
is it measured? Does it affect loyalty? Journal of Marketing, 73(3), 52–68.
Bughin, J., Doogan, J., & Vetvik, O. J. (2010). A new way to measure word-of-mouth
marketing. The McKinsey Quarterly, 2, 113–116.
Caprariello, P. A., & Reis, H. T. (2013). To do, to have, or to share? Valuing experiences
over material possessions depends on the involvement of others. Journal of Personality
and Social Psychology, 104(2), 199–215.
Carter, T. J., & Gilovich, T. (2010). The relative relativity of experiential and material
purchases. Journal of Personality and Social Psychology, 98, 146–159.
Carter, T. J., & Gilovich, T. (2012). I am what I do, not what I have: The differential
centrality of experiential and material purchases to the self. Journal of Personality and
Social Psychology, 102(6), 1304–1317.
Chazin, S. M. (2007). Marketing Apple: 5 secrets of the world’s best marketing machine.
Retrieved from http://www.MarketingApple.com.
Chen, Z. (2017). Social acceptance and word of mouth: How the motive to belong leads to
divergent WOM with strangers and friends. Journal of Consumer Research. https://doi.
org/10.1093/jcr/ucx055.
Chen, Z., & Berger, J. (2016). How content acquisition method affects word of mouth.
Journal of Consumer Research, 43(1), 86–102.
Chung, C., & Darke, P. (2006). The consumer as advocate: Self-relevance, culture, and
word of-mouth. Marketing Letters, 17, 269–279.
Csikszentmihalyi, M., & Rochberg-Halton, E. (1981). The meaning of things: Domestic
symbols and the self. Cambridge, UK: Cambridge University Press.
De Matos, C. A., & Rossi, C. A. V. (2008). Word-of-mouth communications in marketing: A
meta-analytic review of the antecedents and moderators. Journal of the Academy of
Marketing Science, 36(4), 578–596.
Dichter, E. (1966). How word of mouth advertising works. Harvard Business Review, 44(6),
147–166.
Dubois, D., Bonezzi, A., & De Angelis, M. (2016). Sharing with friends versus strangers:
How interpersonal closeness influences word-of-mouth valence. Journal of Marketing
Research, 53(5), 712–727.
Dunn, E. W., & Weidman, A. C. (2014). Building a science of spending: Lessons from the
past and directions for the future. Journal of Consumer Psychology, 25(1), 172–178.
Elliot, S. (2013, September 23). Ads for rosewood hotels hope to convey a sense of place.
The New York Times. Retrieved from http://www.nytimes.com/.
Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1993). Consumer behavior (8th ed.). Fort
Worth: Dryden Press.
Escalas, J. E. (2007). Self-referencing and persuasion: Narrative transportation versus
analytical elaboration. Journal of Consumer Research, 33, 421–429.
Gallo, I., Escalas, J., & Sood, S. (2018). Transported through time: The importance of narrative processing, transportation, and consistency on experiential purchases compared to
material purchases (Working Paper)IESE Business School.
Gallo, I., Sood, S., Mann, T. C., & Gilovich, T. (2016). The heart and the head: On choosing
experiences intuitively and possessions deliberatively. Journal of Behavioral Decision
Making, 30, 754–768.
Gentile, C., Spiller, N., & Noci, G. (2007). How to sustain the customer experience: An
overview of experience components that co-create value with the customer. European
Management Journal, 25(5), 395–410.
Gilovich, T., Kumar, A., & Jampol, L. (2015). The beach, the bikini, and the best buy:
Replies to Dunn and Weidman, and to Schmitt, Brakus, and Zarantonello. Journal of
Consumer Psychology, 25(1), 179–184.
Godes, D., & Mayzlin, D. (2009). Firm-created word-of-mouth communication: Evidence
from a field test. Marketing Science, 28, 721–739.
Godes, D., Mayzlin, D., Chen, Y., Das, S., Dellarocas, C., Pfeiffer, B., … Verlegh, P. (2005).
The firm’s management of social interactions. Marketing Letters, 16(3–4), 415–428.
Gummesson, E. (1995). Relationship marketing. Gower handbook of marketing. 4.
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis:
A regression-based approach. New York, NY: Guilford Press.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic wordof-mouth via consumer-opinion platforms: What motivates consumers to articulate
themselves on the internet? Journal of Interactive Marketing, 18, 38–52.
Holbrook, M. B., & Hirschman, E. C. (1982). The experiential aspects of consumption:
Consumer fantasies, feelings, and fun. Journal of Consumer Research, 9(2), 132–140.
Inman, J. J., & Zeelenberg, M. (2002). Regret in repeat purchase versus switching decisions: The attenuating role of decision justifiability. Journal of Consumer Research,
29(1), 116–128.
Jain, S. P., & Posavac, S. S. (2001). Prepurchase attribute verifiability, source credibility,
and persuasion. Journal of Consumer Psychology, 11, 169–180.
I. Gallo et al. Journal of Business Research 98 (2019) 177–190
189
King, R. A., Racherla, P., & Bush, V. D. (2014). What we know and don’t know about
online word-of-mouth: A review and synthesis of the literature. Journal of Interactive
Marketing, 28(3), 167–183.
Kumar, A., & Gilovich, T. (2015). Some “thing” to talk about? Differential story utility
from experiential and material purchases. Personality and Social Psychology Bulletin,
41(10), 1320–1331.
LaSalle, D., & Britton, T. A. (2003). Priceless. Turning ordinary products into extraordinary
experiences. Boston, MA: Harvard Business School Press.
Lovett, M. J., Peres, R., & Shachar, R. (2013). On brands and word of mouth. Journal of
Marketing Research, 50(4), 427–444.
Maxham, J. G., III (2001). Service recovery’s influence on consumer satisfaction, positive
word-of-mouth, and purchase intentions. Journal of Business Research, 54(1), 11–24.
Mazzarol, T., Sweeney, J. C., & Soutar, G. N. (2007). Conceptualizing word-of-mouth
activity, triggers and conditions: An exploratory study. European Journal of Marketing,
41(11/12), 1475–1494.
McAdams, D. P. (2001). The psychology of life stories. Review of General Psychology, 5(2),
100–122.
Mittal, B. (1999). The advertising of services: Meeting the challenge of intangibility.
Journal of Service Research, 2, 98–116.
Muniz, A. M., Jr., & O’Guinn, T. C. (2001). Brand community. Journal of Consumer
Research, 27, 412–432.
Myers, E. (1985). Phenomenological analysis of the importance of special possessions: An
exploratory study. Advances in Consumer Research, 12, 560–565.
Nelson, P. (1970). Information and consumer behavior. Journal of Political Economy, 78,
311–329.
Newman, A. A. (2012, March 7). Marketers promoting a granola bar hit the trails in
national parks. The New York Times. Retrieved from http://www.nytimes.com/.
Nicolao, L., Irwin, J. R., & Goodman, J. K. (2009). Happiness for sale: Do experiential
purchases make consumers happier than material purchases? Journal of Consumer
Research, 36, 188–198.
Nielsen (2015, October 2). Word-of-mouth recommendations remain the most credible.
Retrieved from http://www.nielsen.com.
Nysveen, H., Pedersen, P. E., & Skard, S. (2013). Brand Experiences in service organizations: exploring the individual effects of brand experience dimensions. Journal of
Brand Management, 20(5).
Packard, G., Gershoff, A., & Wooten, D. B. (2016). When boastful word of mouth helps
versus hurts social perceptions and persuasion. Journal of Consumer Research, 43(1),
26–43.
Pan, Y., & Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated
product reviews. Journal of Retailing, 87(4), 598–612.
Pine, B., & Gilmore, J. H. (1999). The experience economy. Boston, MA: Harvard Business
School Press.
Rimé, B. (2009). Emotion elicits the social sharing of emotion: Theory and empirical
review. Emotion Review, 1, 60–85.
Rust, R. T., & Cooil, B. (1994). Reliability measures for qualitative data: Theory and
implications. Journal of Marketing Research, 1–14.
Schmitt, B., Brakus, J., & Zarantonello, L. (2015). From experiential psychology to consumer experience. Journal of Consumer Psychology, 25(1), 166–171.
Schmitt, B. H. (1999). Experiential marketing: How to get customers to sense, feel, think, act,
and relate to your company and brands. New York: Free Press.
Schmitt, B. H. (2010). Customer experience management: A revolutionary approach to connecting with your customers. New Jersey: John Wiley & Sons.
Sundaram, D. S., Mitra, K., & Webster, C. (1998). Word-of-mouth communications: A
motivational analysis. Advances in Consumer Research, 25, 527–531.
Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site. Journal of
Marketing, 73(5), 90–102.
Tuškej, U., Golob, U., & Podnar, K. (2013). The role of consumer-brand identification in
building brand relationships. Journal of Business Research, 66(1), 53–59.
Van Boven, L., Campbell, M. C., & Gilovich, T. (2010). Stigmatizing materialism: On
stereotypes and impressions of materialistic and experiential pursuits. Personality and
Social Psychology Bulletin, 36(4), 551–563.
Van Boven, L., & Gilovich, T. (2003). To do or to have? That is the question. Journal of
Personality and Social Psychology, 85(6), 1193–1202.
Wallendorf, M., & Arnould, E. J. (1988). My favorite things: A cross-cultural inquiry into
object attachment, possessiveness, and social linkage. Journal of Consumer Research,
14, 531–547.
Wilson, A. E., & Ross, M. (2003). The identity function of autobiographical memory: Time
is on our side. Memory, 11(2), 137–149.
Wojnicki, A. C., & Godes, D. (2008). Word-of-mouth as self-enhancement (Working paper)
Rotman School of Management, University of Toronto.
Wright, A. A., & Lynch, J. G. (1995). Communication effects of advertising versus direct
experience when both search and experience attributes are present. Journal of
Consumer Research, 21, 708–718.
Yeh, Y., & Choi, S. M. (2011). MINI-lovers, maxi-mouths: An investigation of antecedents
to eWOM intention among brand community members. Journal of Marketing
Communications, 17(3), 145–162.
You, Y., Vadakkepatt, G. G., & Joshi, A. M. (2015). A meta-analysis of electronic word-ofmouth elasticity. Journal of Marketing, 79(2), 19–39.
Zarantonello, L., Jedidi, K., & Schmitt, B. H. (2013). Functional and experiential routes to
persuasion: An analysis of advertising in emerging versus developed markets.
International Journal of Research in Marketing, 30(1), 46–56.

Excellent Product … But Too Early to Say: Consumer Reactions to Tentative Product Reviews

Kemafasu I, (2020), Excellent Product … But Too Early to Say: Consumer Reactions to Tentative Product Reviews, Journal of Interactive Marketing, 52, p35-p51.

https://www.sciencedirect.com/science/article/abs/pii/S1094996820300785

Mots clés : Examens en ligne, Expertise des sources, Expérience des produits, Certitude des attitudes, Exhaustivité des informations

Résumé : Cette recherche explore les effets de la tentation dans les critiques de produits en ligne sur la certitude de l’attitude du produit des consommateurs et les intentions comportementales. En s’appuyant sur la théorie de la saillance, la théorie de l’attribution et le travail dans la certitude d’attitude, on voit que, lorsque les consommateurs qui ont vu des critiques positives d’un produit sont exposés à une évaluation provisoire, leur certitude et leur volonté d’acheter sont réduites. On prédit également que les réactions des consommateurs diffèrent en fonction de l’expertise de la source d’avis ainsi que de l’expérience produit du consommateur.

Est abordée également la confiance dans l’exhaustivité des informations en tant que mécanisme métacognitif qui explique l’effet de révision provisoire. Plus précisément, on soutient que les consommateurs qui voient un examen provisoire sont sensibilisés aux informations potentiellement manquantes, ce qui réduit leur certitude et leur volonté d’achat.

Les hypothèses sont testées dans une série d’expériences qui démontrent que la timidité réduit la certitude et la volonté d’achat, mais que l’effet est atténué lorsque l’évaluateur est un novice et lorsque le consommateur a un niveau élevé d’expérience du produit.

Grandes lignes :

  • Un examen provisoire se traduit par une certitude et des intentions d’achat inférieures à un examen positif, négatif ou mixte
  • Le fait que ce soit provisoire se traduit par une diminution de la confiance des consommateurs dans l’exhaustivité des informations.
  • L’effet d’un avis provisoire est diminué lorsque l’examinateur provisoire est perçu comme un novice.

Les consommateurs qui ont une faible expertise produit sont davantage influencés par un examen provisoire que ceux qui ont une expertise produit plus élevée

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and
Human Decision Processes, 50(2), 179–211.
Alba, J. W., & Hutchinson, J. W. (1987). Dimensions of consumer expertise.
Journal of Consumer Research, 13(4), 411–454.
Anderson, C. (2007). The long tail: How endless choice is creating unlimited
demand. Random House.
Babić, R. A., Sotgiu, F., De Valck, K., & Bijmolt, T. H. A. (2016). The effect of
electronic word-of-mouth on sales: A meta-analytic review of platform,
product, and metric factors. Journal of Marketing Research, 53(3), 297–318.
Banerjee, S., Bhattacharyya, S., & Bose, I. (2017). Whose online reviews to
trust? Understanding reviewer trustworthiness and its impact on business.
Decision Support Systems, 96, 17–26.
Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of
Personality and Social Psychology, 42(1), 116.
Casaló, L. V., Flavián, C., Guinalíu, M., & Ekinci, Y. (2015). Avoiding the dark
side of positive online consumer reviews: Enhancing reviews’ usefulness for
high risk-averse travelers. Journal of Business Research, 68(9), 1829–1835.
Chevalier, J. A., Dover, Y., & Mayzlin, D. (2018). Channels of impact: User
reviews when quality is dynamic and managers respond. Marketing Science,
37(5), 688–709.
Chiou, J.-S., Hsiao, C.-C., & Chiu, T.-Y. (2018). The credibility and attribution
of online reviews: Differences between high and low product knowledge
consumers. Online Information Review, 42(5), 630–646.
Choi, S., & Mattila, A. S. (2018). The effect of experience congruity on
repurchase intention: The moderating role of public commitment. Service
Science, 10(2), 124–138.
Flemming, D., Cress, U., & Kimmerle, J. (2017). User comments about research
findings: how Conflictual information in online science journalistic articles
influences laypeople’s understanding of scientific tentativeness. Communications, 42(4), 465–480.
Flemming, D., Feinkohl, I., Cress, U., & Kimmerle, J. (2015). Individual
uncertainty and the uncertainty of science: The impact of perceived conflict
and general self-efficacy on the perception of tentativeness and credibility of
scientific information. Frontiers in Psychology, 6, 1859.
Floyd, K., Freling, R., Alhoqail, S., Cho, H. Y., & Freling, T. (2014). How
online product reviews affect retail sales: A meta-analysis. Journal of
Retailing, 90(2), 217–232.
Folse, J. A. G., Porter III, M., Godbole, M. B., & Reynolds, K. E. (2016). The
effects of negatively Valenced emotional expressions in online reviews on
the reviewer, the review, and the product. Psychology & Marketing, 33(9),
747–760.
Forbes-Riley, K., & Litman, D. (2011). Benefits and challenges of real-time
uncertainty detection and adaptation in a spoken dialogue computer tutor.
Speech Communication, 53(9–10), 1115–1136.
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship
between reviews and sales: The role of reviewer identity disclosure in
electronic markets. Information Systems Research, 19(3), 291–313.
Hamilton., Ryan., Kathleen D. Vohs., & Ann L. McGill. (2014). We’ll be
honest, this won’t be the best article you’ll ever read: The use of dispreferred
markers in word-of-mouth communication.. Journal of Consumer
Research, 41(1), 197–212.
Häfner, M., & Trampe, D. (2009). When thinking is beneficial and when it is
not: The effects of thin and round advertising models. Journal of Consumer
Psychology, 19(4), 619–628.
Hair, M., & Ozcan, T. (2018). How reviewers’ use of profanity affects perceived
usefulness of online reviews. Marketing Letters, 29(2), 151–163.
Hassan, S., Tantithamthavorn, C., Bezemer, C.-P., & Hassan, A. E. (2018).
Studying the dialogue between users and developers of free apps in the
Google play store. Empirical Software Engineering, 23(3), 1275–1312.
Hayes, A. F. (2013). Introduction to Mediation, Moderation, and Conditional
Process Analysis: A Regression-Based Approach. New York, NY: The
Guilford Press.
Ho-Dac, N. N., Carson, S. J., & Moore, W. L. (2013). The effects of positive
and negative online customer reviews: Do brand strength and category
maturity matter? Journal of Marketing, 77(6), 37–53.
Hyland, K. (1996). Writing without conviction? Hedging in science research
articles. Applied linguistics, 17(4), 433–454.
Jensen, M. L., Averbeck, J. M., Zhu, Z., & Wright, K. B. (2013). Credibility of
anonymous online product reviews: A language expectancy perspective.
Journal of Management Information Systems, 30(1), 293–324.
Jiménez, F. R., & Mendoza, N. A. (2013). Too popular to ignore: The influence
of online reviews on purchase intentions of search and experience products.
Journal of Interactive Marketing, 27(3), 226–235.
Kardes, F. R., Posavac, S. S., & Cronley, M. L. (2004). Consumer inference: A
review of processes, bases, and judgment contexts. Journal of Consumer
Psychology, 14(3), 230–256.
Kardes, F. R., Posavac, S. S., Silvera, D., Cronley, M. L., Sanbonmatsu, D. M.,
& Schertzer, S., et al (2006). Debiasing omission neglect. Journal of
Business Research, 59(6), 786–792.
Karmarkar, U. R., & Tormala, Z. L. (2009). Believe me, I have no idea what I’m
talking about: The effects of source certainty on consumer involvement and
persuasion. Journal of Consumer Research, 36(6), 1033–1049.
Koçaş, C., & Akkan, C. (2016). A system for pricing the sales distribution from
blockbusters to the long tail. Decision Support Systems, 89, 56–65.
Lederman, N. G., & O’Malley, M. (1990). Students’ perceptions of tentativeness
in science: Development, use, and sources of change. Science Education, 74
(2), 225–239.
Lee, S., & Ro, H. (2016). The impact of online reviews on attitude changes: The
differential effects of review attributes and consumer knowledge. International Journal of Hospitality Management, 56, 1–9.
Ludwig, S., De Ruyter, K., Friedman, M., Brüggen, E. C., Wetzels, M., &
Pfann, G. (2013). More than words: The influence of affective content and
linguistic style matches in online reviews on conversion rates. Journal of
Marketing, 77(1), 87–103.
McAuley, J., Pandey, R., & Leskovec, J. (2015). Inferring networks of
substitutable and complementary products. Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 785–794.
McGinnies, E., & Ward, C. D. (1980). Better liked than right: Trustworthiness
and expertise as factors in credibility. Personality and Social Psychology
Bulletin, 6(3), 467–472.
Minnema, A., Bijmolt, T. H. A., Gensler, S., & Wiesel, T. (2016). To keep or
not to keep: Effects of online customer reviews on product returns. Journal
of Retailing, 92(3), 253–267.
Mishra, S., U. N. Umesh., & Donald E. Stem Jr. (1993). Antecedents of the
attraction effect: An information-processing approach. Journal of Marketing
Research, 30(3), 331–349.
Mitchell, A. A., & Dacin, P. A. (1996). The assessment of alternative measures
of consumer expertise. Journal of Consumer Research, 23(3), 219–239.
Moore, S. G. (2015). Attitude predictability and helpfulness in online reviews:
The role of explained actions and reactions. Journal of Consumer Research,
42(1), 30–44.
Mudambi, S. M., & Schuff, D. (2010). What makes a helpful review? A study of
customer reviews on Amazon.Com. MIS Quarterly, 34(1), 185–200.
Nam, M., Wang, J., & Lee, A. Y. (2012). The difference between differences:
How expertise affects diagnosticity of attribute alignability. Journal of
Consumer Research, 39(4), 736–750.
Petty, R. E., & Brinol, P. (2008). Persuasion: From single to multiple to
metacognitive processes. Perspectives on Psychological Science, 3(2), 137–147.
Pfeiffer, B. E., Deval, H., Kardes, F. R., Ewing, D. R., Han, X., & Cronley, M.
L. (2014). Effects of construal level on omission detection and multiattribute
evaluation. Psychology and Marketing, 31(11), 992–1007.
Picazo-Vela, S., Chou, S. Y., Melcher, A. J., & Pearson, J. M. (2010). Why
provide an online review? An extended theory of planned behavior and the
role of big-five personality traits. Computers in Human Behavior, 26(4),
685–696.
Poddar, A., Banerjee, S., & Sridhar, K. (2017). False advertising or slander?
Using location based tweets to assess online rating-reliability. Journal of
Business Research, 99, 390–397.
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated
mediation hypotheses: Theory, methods, and prescriptions. Multivariate
Behavioral Research, 42(1), 185–227.
50 K. Ifie / Journal of Interactive Marketing 52 (2020) 35–51
Qiu, L., Pang, J., & Lim, K. H. (2012). Effects of conflicting aggregated rating
on EWOM review credibility and diagnosticity: The moderating role of
review valence. Decision Support Systems, 54(1), 631–643.
Rucker, D. D., Petty, R. E., & Pablo, B. (2008). What’s in a frame anyway?: A
meta‐cognitive analysis of the impact of one versus two sided message framing
on attitude certainty. Journal of Consumer Psychology, 18(2), 137–149.
Rucker, D. D., Tormala, Z. L., Petty, R. E., & Briñol, P. (2014). Consumer
conviction and commitment: An appraisal-based framework for attitude
certainty. Journal of Consumer Psychology, 24(1), 119–136.
Schlosser, A. E. (2011). Can including pros and cons increase the helpfulness
and persuasiveness of online reviews? The interactive effects of ratings and
arguments. Journal of Consumer Psychology, 21(3), 226–239.
Schwartz, R., & Lederman, N. (2008). What scientists say: Scientists’ views of
nature of science and relation to science context. International Journal of
Science Education, 30(6), 727–771.
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into
negative consumer reviews on the web. Journal of Interactive Marketing, 21
(4), 76–94.
Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned
action: A meta-analysis of past research with recommendations for
modifications and future research. Journal of Consumer Research, 15(3),
325–343.
Shoham, M., Moldovan, S., & Steinhart, Y. (2017). Positively useless:
Irrelevant negative information enhances positive impressions. Journal of
Consumer Psychology, 27(2), 147–159.
Skowronski, J. J., & Carlston, D. E. (1989). Negativity and extremity biases in
impression formation: A review of explanations. Psychological Bulletin,
105(1), 131–142.
Smith, S. M., Fabrigar, L. R., MacDougall, B. L., & Wiesenthal, N. L. (2008).
The role of amount, cognitive elaboration, and structural consistency of
attitude-relevant knowledge in the formation of attitude certainty. European
Journal of Social Psychology, 38(2), 280–295.
Snehasish, B. (2017). Study of Authentic and Fictitious Online Reviews
(Unpublished Doctoral dissertation).
Tang, T., Fang, E., & Wang, F. (2014). Is neutral really neutral? The effects of
neutral user-generated content on product sales. Journal of Marketing, 78
(4), 41–58.
Taylor, S. E., & Thompson, S. C. (1982). Stalking the elusive vividness effect.
Psychological Review, 89, 155–181.
Tormala, Z. L., & Rucker, D. D. (2018). Attitude certainty: Antecedents,
consequences, and new directions. Consumer Psychology Review, 1(1),
72–89.
Wan, E. W., Rucker, D. D., Tormala, Z. L., & Clarkson, J. J. (2010). The effect
of regulatory depletion on attitude certainty. Journal of Marketing Research,
47(3), 531–541.
Webster, D. M., & Kruglanski, A. W. (1994). Individual differences in need for
cognitive closure. Journal of Personality and Social Psychology, 67(6),
1049.
Willemsen, L. M., Neijens, P. C., & Bronner, F. (2012). The ironic effect of
source identification on the perceived credibility of online product
reviewers. Journal of Computer-Mediated Communication, 18(1), 16–31.
Wu, L., Shen, H., Li, M., & Deng, Q. (2017). Sharing information now vs later:
The effect of temporal contiguity cue and power on consumer response
toward online reviews. International Journal of Contemporary Hospitality
Management, 29(2), 648–668.
Xie, H. J., Miao, L., Kuo, P.-J., & Lee, B.-Y. (2011). Consumers’ responses to
ambivalent online hotel reviews: The role of perceived source credibility
and pre-decisional disposition. International Journal of Hospitality
Management, 30(1), 178–183.
Yin, D., Bond, S., & Zhang, H. (2014). Anxious or angry? Effects of discrete
emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38
(2), 539–560.
Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The
moderating role of product and consumer characteristics. Journal of
Marketing, 74(2), 133–148.

Technology sourcing for website personalization and social media marketing: A study of e-retailing industry

  • Journal of Business Research, Volume 80, November 2017, Pages 10-23
    Technology sourcing for website personalization and social media marketing: A study of e-retailing industry

https://www-sciencedirect-com.ezproxy.inseecgateway.com/science/article/pii/S0148296317302023

Mots-clefs : Approvisionnement technologique Personnalisation de sites web Marketing des médias sociaux Performance du marché

Résumé :Les flux de littérature existants sur le sourcing technologique, la personnalisation des sites web et le marketing des médias sociaux sont distincts les uns des autres et ne peuvent donc pas expliquer l’impact du sourcing technologique pour la personnalisation des sites web et le marketing des médias sociaux sur les ventes. Pour combler cette lacune, nous utilisons divers concepts tels que l’efficacité, l’adaptabilité, les risques de dépendance, le manque de contrôle de qualité, la spécificité des actifs et les connaissances tacites pour émettre des hypothèses sur l’effet direct du sourcing technologique sur les ventes ainsi que l’effet indirect par le biais des performances des médias sociaux. En utilisant les données d’une enquête menée auprès de 105 détaillants en ligne américains, nous montrons que les détaillants en ligne qui utilisent un approvisionnement technologique mixte pour la personnalisation de sites web réalisent des ventes plus importantes que les détaillants en ligne qui utilisent une technologie développée en interne ou en externe. Au contraire, les détaillants en ligne qui choisissent une technologie développée en externe pour le marketing des médias sociaux réalisent un chiffre d’affaires plus important que les détaillants en ligne qui proposent un marketing des médias sociaux utilisant une technologie développée en interne ou un approvisionnement mixte.

Elements of strategic social media marketing: A holistic framework

  • Journal of Business Research, Volume 70, January 2017, Pages 118-126. Elements of strategic social media marketing: A holistic framework

https://www-sciencedirect-com.ezproxy.inseecgateway.com/science/article/pii/S0148296316302843

Mots-clefs : Marketing stratégique des réseaux sociaux Cadre holistique Nouveaux médias Définition du marketing des réseaux sociaux Stratégie des réseaux sociaux Marketing numérique

Grandes lignes :
Cette recherche présente une définition nouvelle et holistique du marketing des médias sociaux.
Le marketing des médias sociaux est transversal et interdisciplinaire.
Les dimensions du marketing des médias sociaux comprennent la culture, la portée, la structure et la gouvernance.
Les résultats sont intégrés dans un cadre holistique de marketing des médias sociaux.
La gestion du marketing stratégique des médias sociaux est très complexe.

Résumé : Le marketing des médias sociaux fait partie intégrante du monde des affaires du XXIe siècle. Cependant, la littérature sur le marketing des médias sociaux reste fragmentée et se concentre sur des questions isolées, telles que les tactiques pour une communication efficace. La recherche actuelle applique une approche qualitative et théorique pour développer un cadre stratégique qui articule quatre dimensions génériques du marketing stratégique des médias sociaux. La portée du marketing des médias sociaux représente un éventail allant des défenseurs aux explorateurs, la culture du marketing des médias sociaux inclut les pôles du conservatisme et du modernisme, les structures du marketing des médias sociaux se situent entre les hiérarchies et les réseaux, et la gouvernance du marketing des médias sociaux va de l’autocratie à l’anarchie. En fournissant une conceptualisation et une définition complètes du marketing stratégique des médias sociaux, cette recherche propose un cadre intégratif qui va au-delà de la théorie marketing existante. En outre, les gestionnaires peuvent appliquer ce cadre pour positionner leur organisation sur ces quatre dimensions d’une manière cohérente avec leur mission et leurs objectifs généraux.