Impacts of online consumer reviews on a dual-channel supply chain

W Yang, J Zhang, H Yan, (2020), Impacts of online consumer reviews on a dual-channel supply chain, Omega

Mots clés : canal, Avis en ligne, Gestion de la chaîne logistique, prix, consommateurs

Résumé : Cet article examine les effets des avis de consommateurs en ligne sur un double canal où le fabricant distribue un produit via un canal de vente au détail et un canal Internet. Cette étude permet aux auteurs de développer des modèles théoriques de jeu pour capturer les décisions de tarification et les bénéfices des deux joueurs avec les avis en ligne, sous deux structures de canaux différentes. En particulier, dans le cadre du canal centralisé, les avis en ligne peuvent augmenter ou diminuer le prix direct mais toujours baisser le prix de détail. Sous le canal décentralisé, l’étude montre que le fabricant a une probabilité plus élevée de facturer un prix direct plus élevé que sous le canal centralisé, et le détaillant a également la possibilité d’améliorer le prix de détail.

Conclusion : Cette étude nous permet d’énoncer que, dans le cadre d’un canal centralisé, les avis en ligne ont l’influence nécessaire pour augmenter et/ou diminuer le prix direct de vente. Cependant ces mêmes faux avis n’ont qu’un effet de baisse sur le prix de vente de détail.

Cet article est en mesure d’indiquer que, cette fois dans un canal décentralisé, un fabricant a plus de chance d’augmenter son prix direct, comparé au canal centralisé. Le détaillant a également la possibilité d’améliorer son prix de détail.
Les auteurs concluent leur étude par un conseil managérial. Celui-ci indique qu’il n’est pas nécessairement judicieux pour un fabricant de fournir lui-même des avis en ligne. La seule raison pourrait être que ces avis en ligne sont considérés comme insuffisants et ne sont donc pas suffisamment favorables, peu importe la structure du canal.  

Sources :

[1] Hua G, Wang S, Cheng TE. Price and lead time decisions in dual-channel supply
chains. Eur J Oper Res 2010;205(1):113–26.
[2] Jiang B, Yang B. Quality and pricing decisions in a market with consumer information sharing. Manage Sci 2019;65(1):272–85.
[3] Luo L, Sun J. New product design under channel acceptance: brick-and-mortar,
online-exclusive, or brick-and-click. Prod Oper Manag 2016;25(12):2014–34.
[4] Nelson P. Advertising as information. J Polit Econ 1974;82(4):729–54.
[5] Chambers C, Kouvelis P, Semple J. Quality-based competition, profitability, and
variable costs. Manage Sci 2006;52(12):1884–95.
[6] Chen J, Liang L, Yao D-Q, Sun S. Price and quality decisions in dual-channel
supply chains. Eur J Oper Res 2017;259(3):935–48.
[7] Chiang W-yK, Chhajed D, Hess JD. Direct marketing, indirect profits: a strategic
analysis of dual-channel supply-chain design. Manage Sci 2003;49(1):1–20.
[8] Chen L, Jiang T, Li W, Geng S, Hussain S. Who should pay for online reviews? Design of an online user feedback mechanism. Electron Commer Res
Appl 2017;23:38–44.
[9] Dukes A, Geylani T, Liu Y. Dominant retailers incentives for product quality in
asymmetric distribution channels. Mark Lett 2014;25(1):93–107.
[10] Gao GG, Greenwood BN, Agarwal R, McCullough J. Vocal minority and silent
majority: how do online ratings reflect population perceptions of quality? Mis
Quart 2015;39(3):565–89.
[11] Li X, Hitt LM. Self-selection and information role of online product reviews. Inf
Syst Res 2008;19(4):456–74.
[12] Cattani K, Gilland W, Heese HS, Swaminathan J. Boiling frogs: pricing strategies
for a manufacturer adding a direct channel that competes with the traditional
channel. Prod Oper Manag 2006;15(1):40–56.
[13] Kumar N, Ruan R. On manufacturers complementing the traditional retail
channel with a direct online channel. Quant Mark Econ 2006;4(3):289–323.
[14] Dumrongsiri A, Fan M, Jain A, Moinzadeh K. A supply chain model with direct
and retail channels. Eur J Oper Res 2008;187(3):691–718.
[15] Hsiao L, Chen Y-J. Strategic motive for introducing internet channels in a supply chain. Prod Oper Manag 2014;23(1):36–47.
[16] Chen J, Zhang H, Sun Y. Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain. Omega 2012;40(5):571–83.
[17] Duan W, Gu B, Whinston AB. Do online reviews matter? An empirical investigation of panel data. Decis Support Syst 2008;45(4):1007–16.
[18] Liu M, Cao E, Salifou CK. Pricing strategies of a dual-channel supply chain with
risk aversion. Transport Res Part E 2016;90:108–20.
[19] Chevalier JA, Mayzlin D. The effect of word of mouth on sales: online book
reviews. J Market Res 2006;43(3):345–54.
[20] Zhu F, Zhang X. Impact of online consumer reviews on sales: the moderating
role of product and consumer characteristics. J Mark 2010;74(2):133–48.
[21] Godes D, Mayzlin D. Using online conversations to study word-of-mouth communication. Mark Sci 2004;23(4):545–60.
[22] Zhang KZ, Cheung CM, Lee MK. Examining the moderating effect of inconsistent reviews and its gender differences on consumers online shopping decision. Int J Inf Manage 2014;34(2):89–98.
[23] Maslowska E, Malthouse EC, Viswanathan V. Do customer reviews drive purchase decisions? The moderating roles of review exposure and price. Decis
Support Syst 2017;98:1–9.
[24] Guo M, Liao X, Liu J, Zhang Q. Consumer preference analysis: a data-driven
multiple criteria approach integrating online information. Omega 2019:102074.
[25] Li X, Hitt LM, Zhang ZJ. Product reviews and competition in markets for repeat
purchase products. J Manag Inf Syst 2011;27(4):9–42.
[26] Kwark Y, Chen J, Raghunathan S. Online product reviews: implications for retailers and competing manufacturers. Inf Syst Res 2014;25(1):93–110.
[27] He Q-C, Chen Y-J. Dynamic pricing of electronic products with consumer reviews. Omega 2018;80:123–34.
[28] Kacen JJ, Hess JD, Chiang W-yK. Bricks or clicks? Consumer attitudes toward
traditional stores and online stores. Glob Econ Manag Rev 2013;18(1):12–21.
[29] Jing B. Showrooming and webrooming: information externalities between online and offline sellers. Mark Sci 2018;37(3):469–83

Dynamic pricing of electronic products with consumer reviews

He Q, Chen K, (2018), Dynamic pricing of electronic products with consumer reviews, Omega, Vol. 80, pp. 123-134

Mots clés : Tarification dynamique, Produits électroniques, Avis des consommateurs, Apprentissage bayésien, Approximation fluide

Résumé : Les avis des consommateurs sont devenus omniprésents dans le secteur du e-commerce notamment, en particulier pour l’achat de produits électroniques. Cet article, étudie les stratégies de prix optimales pour une plateforme vendant des produits électroniques lorsque les consommateurs apprennent de manière séquentielle la qualité des produits à partir des avis des consommateurs. L’étude est centrée sur l’analyse transitoire pour calibrer la façon dont les externalités de l’information à travers la dimension temporelle fausseraient les stratégies optimales de tarification du vendeur. Face au problème du « démarrage à froid », le vendeur de produits de haute qualité choisirait des prix plus bas pour accélérer le processus d’apprentissage des consommateurs. Par conséquent, les prix optimaux souffrent de distorsions à la baisse qui augmentent la qualité des produits dans ce régime de réputation.

Dans les extensions, l’auteur propose un cadre souple et flexible pour soutenir les processus décisionnels tant opérationnels que stratégiques. La valeur de la publicité persuasive et les résultats suggèrent que les avis des consommateurs et les efforts de marketing sont des substituts stratégiques. En termes de contrôle de la qualité, l’étude permet de dire qu’il serait optimal d’investir dans la qualité dès les premiers stades, mais de s’arrêter à un certain seuil de temps, ce qui se traduit par un modèle de renforcement de la réputation. Enfin, les auteurs étendent le cadre pour étudier un problème de prix duopole. Le vendeur de produits haute qualité pourrait accueillir stratégiquement le vendeur de mauvaise qualité dans les premiers stades, et déclencher une guerre des prix aux stades ultérieurs.

Conclusion : Cette étude a permis de définir un modèle de tarification dynamique intervenant lorsque les consommateurs apprennent de manière séquentielle sur la qualité des produits à partir seulement des avis de consommateurs. L’article définit également une analyse transitoire permettant de calibrer la façon dont les externalités d’une information fausseraient les stratégies de tarification optimales du vendeur.

Les auteurs définissent un cadre utilisant une approximation fluide soutenant les processus décisionnels opérationnels et stratégiques.

Sources :


[1] Bergemann D, Välimäki J. Dynamic pricing of new experience goods. J Political
Econ 2006;114(4):713–43.
[2] Bertsekas DP, Bertsekas DP, Bertsekas DP, Bertsekas DP. Dynamic programming
and optimal control, vol. 2. Belmont, MA: Athena Scientific; 1995.
[3] Bertsimas D, Mersereau AJ. A learning approach for interactive marketing to a
customer segment. Oper Res 2007;55(6):1120–35.
[4] Besbes O., Scarsini M.. On information distortions in online ratings. Available
at SSRN 22660532015.
[5] Board S, Meyer-ter Vehn M. Reputation for quality. Econometrica
2013;81(6):2381–462.
[6] Bose S, Orosel G, Ottaviani M, Vesterlund L. Monopoly pricing in the binary
herding model. Econ Theory 2008;37(2):203–41.
[7] Campbell A. Word-of-mouth communication and percolation in social networks. Am Econ Rev 2013;103(6):2466–98.
[8] Chen Y, Xie J. Online consumer review: word-of-mouth as a new element of
marketing communication mix. Manag Sci 2008;54(3):477–91.
[9] den Boer AV, Zwart B. Dynamic pricing and learning with finite inventories.
Oper Res 2015;63(4):965–78.
[10] Harrison JM, Keskin NB, Zeevi A. Bayesian dynamic pricing policies: learning
and earning under a binary prior distribution. Manag Sci 2012;58(3):570–86.
[11] Hendricks K, Sorensen A, Wiseman T. Observational learning and demand for
search goods. Am Econ J: Microecon 2012;4(1):1–31.
[12] Ifrach B. Market dynamics with many agents: applications in social learning
and competition. ProQuest Information & Learning; 2013. Ph.D. thesis.
[13] Ifrach B, Maglaras C, Scarsini M. Bayesian social learning with consumer reviews. ACM SIGMETRICS Perform Eval Rev 2014;41(4):28.
[14] Jing B. Exogenous learning, seller-induced learning, and marketing of durable
goods. Manag Sci 2011;57(10):1788–801.
[15] Lauga DO. Persuasive advertising with sophisticated but impressionable consumers. San Diego, La Jolla: University of California; 2010. Working paper.
[16] Li X, Hitt LM. Price effects in online product reviews: an analytical model andempirical analysis. MIS Q 2010;34(4):809–31.
[17] Papanastasiou Y, Bakshi N, Savva N. Social learning from early buyer reviews:
implications for new product launch. London Business School, UK; 2013. Working paper.
[18] Peizer DB, Pratt JW. A normal approximation for binomial, F, beta, and other
common, related tail probabilities, I. J Am Stat Assoc 1968;63(324):1416–56.
[19] Wu C-C, Chen Y-J, Wang C-J. Is persuasive advertising always combative in a
distribution channel. Mark Sci 2009;28(6):1157–63.
[20] Yang N, Zhang R. Dynamic pricing and inventory management under inventory-dependent demand. Oper Res 2014;62(5):1077–94.
[21] Zhao Y, Yang S, Narayan V, Zhao Y. Modeling consumer learning from online
product reviews. Mark Sci 2013;32(1):153–69.

The paradox of (dis)trust in sponsorship disclosure: The characteristics and effects of sponsored online consumer reviews

Kim S, Maslowska E, Tamaddoni A, (2019), The paradox of (dis)trust in sponsorship disclosure: The characteristics and effects of sponsored online consumer reviews, Decision Support Systems, Vol. 116, pp. 114-124

Mots clés : Bouche à oreille digital, Avis des consommateurs en ligne, Parrainage, Persuasion, Attitude, Intention d’achat.

Résumé : Les avis de consommateurs en ligne sont devenus l’un des messages et moyen majeur de persuasion en termes de décision d’achat, créant une influence certaine sur le consommateur.  Dans cette mesure, les spécialistes en marketing ont commencé à inciter les consommateurs à rédiger des avis avec pour objectif d’augmenter le volume d’avis positifs. Cependant, peu de recherches existent sur les caractéristiques de contenu et les effets des avis sponsorisés. Cette étude examine les différentes caractéristiques et effets des avis sponsorisés et organiques, ainsi que les mécanismes par lesquels les consommateurs reconnaissent et traitent ces deux types d’avis, en utilisant notamment des méthodes mixtes dans deux études. Les résultats de l’analyse d’exploration de texte suggèrent que les revues sponsorisées fournissent un contenu considéré comme plus élaboré et évaluatif. Cependant, ces avis sont perçus comme moins utiles que les avis organiques. Les résultats d’une expérience aléatoire suggèrent que la divulgation de parrainage augmente les soupçons sur les arrière-pensées de l’examinateur/récepteur et diminue ainsi les attitudes et intentions d’achat des consommateurs lorsqu’un examen est positif. Par contre, divulgation de parrainage ne nuit pas aux attitudes ou aux intentions d’achat lorsque l’avis est négatif.

Conclusion : Cette étude a permis de démontrer l’effet du parrainage dans un contexte d’avis en ligne. De cet article a ainsi été conclu que les avis dits « sponsorisés » et les avis rédigés par les consommateurs mais percevant une compensation en échange, telle que du parrainage, sont considérés par le récepteur comme biaisés et/ou malhonnêtes.
Cependant l’étude prouve également que les critiques sponsorisés sont généralement plus élaborées, développées, objectives, complexes, positives et moins extrêmes que les critiques dites « organiques ». Cependant ces avis sont tout de même perçus comme les moins utiles, dû à la mention « parrainage » décrédibilisant l’avis en lui-même, qui n’est pas sans intérêt.
Les auteurs concluent ainsi que le système de parrainage, ça divulgation, engendre une augmentation des soupçons et nuit donc sur l’intention d’achat d’un consommateur.  

Sources :

[1] The Nielsen Company, Global Trust in Advertising, Retrieved from, 2015. http://
www.nielsen.com/content/dam/corporate/us/en/reports-downloads/2015-
reports/global-trust-in-advertising-report-sept-2015.pdf.
[2] E. Dichter, How word-of-mouth advertising works, Harvard Business Review 44 (6)
(1966) 147–166.
[3] P. Chatterjee, Drivers of new product recommending and referral behaviour on
social network sites, International Journal of Advertising 30 (1) (2011) 77–101.
[4] P. Hugstad, J.W. Taylor, G.D. Bruce, The effects of social class and perceived risk on
consumer, The Journal of Services Marketing 1 (1) (1987) 47–52.
[5] I. Simonson, Mission (largely) accomplished: what’s next for consumer bdt-jdm
researchers? Journal of Marketing Behavior 1 (1) (2015) 9–35, https://doi.org/10.
1561/107.00000001.
[6] L.J. Abendroth, J.E. Heyman, Honesty is the best policy: the effects of disclosure in
word-of-mouth marketing, Journal of Marketing Communications 19 (4) (2013)
245–257, https://doi.org/10.1080/13527266.2011.631567.
[7] M. Petrescu, K. O’Leary, D. Goldring, S. Ben Mrad, Incentivized reviews: promising
the moon for a few stars, Journal of Retailing and Consumer Services 41 (2018)
288–295, https://doi.org/10.1016/j.jretconser.2017.04.005.
[8] W. Zhou, W. Duan, An empirical study of how third-party websites influence the
feedback mechanism between online word-of-mouth and retail sales, Decision
Support Systems 76 (2015) 14–23, https://doi.org/10.1016/j.dss.2015.03.010.
[9] J. Kennett, S. Matthews, What’s the buzz? Undercover marketing and the corruption
of friendship, Journal of Applied Philosophy 25 (1) (2008) 2–18, https://doi.org/
10.1111/j.1468-5930.2008.00391.x.
[10] K.K. Coker, D.S. Smith, S.A. Altobello, Buzzing with disclosure of social shopping
rewards, Journal of Research in Interactive Marketing 9 (3) (2015) 170–189,
https://doi.org/10.1108/jrim-06-2014-0030.
[11] WOMMA, Word of Mouth Marketing Association Guide to Best Practices for
Transparency and Disclosure in Gigital, Social, & Mobile Marketing, Retrieved from,
http://www.womma.org/wp-content/uploads/2015/08/WOMMA-SocialMedia-Disclosure-Guidelines-2013.pdf.
[12] R.B. Cialdini, 1st Collins business essentials (Ed.), Influence: The Psychology of
Persuasion, Collins, New York: New York, 2007.
[13] J. Breitsohl, M. Khammash, G. Griffiths, E-business complaint management: perceptions and perspectives of online credibility, Journal of Enterprise Information
Management 23 (5) (2010) 653–660, https://doi.org/10.1108/
17410391011083083.
[14] E.R. Spangenberg, J.L. Giese, An exploratory study of word-of-mouth communication in a hierarchy of effects context, Communication Research Reports 14 (1)
(1997) 88–96.
[15] T. Hennig-Thurau, K.P. Gwinner, G. Walsh, D.D. Gremler, Electronic word-of-mouth
via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing 18 (1) (2004) 38–52,
https://doi.org/10.1002/dir.10073.
[16] K. Bawa, R. Shoemaker, The effects of free sample promotions on incremental brand
sales, Marketing Science 23 (3) (2004) 345–363, https://doi.org/10.1287/mksc.
1030.0052.
[17] B.P. Buunk, W.B. Schaufeli, Reciprocity in interpersonal relationships: an evolutionary perspective on its importance for health and well-being, European Review
of Social Psychology 10 (1) (1999) 259–291, https://doi.org/10.1080/
14792779943000080.
[18] A.W. Gouldner, The norm of reciprocity: a preliminary statement, American
Sociological Review 25 (2) (1960) 161–178, https://doi.org/10.2307/2092623.
[19] N. Hu, J. Zhang, P.A. Pavlou, Overcoming the J-shaped distribution of product
reviews, Communications of the ACM 52 (10) (2009) 144–147, https://doi.org/10.
1145/1562764.1562800.
[20] G. Askalidis, S.J. Kim, E.C. Malthouse, Understanding and overcoming biases in
online review systems, Decision Support Systems 97 (2017) 23–30, https://doi.org/
10.1016/j.dss.2017.03.002.
[21] V. Liljander, J. Gummerus, M. Söderlund, Young consumers’ responses to suspected
covert and overt blog marketing, Internet Research 25 (4) (2015) 610–632, https://
doi.org/10.1108/IntR-02-2014-0041.
[22] W.J. Carl, The role of disclosure in organized word-of-mouth marketing programs,
Journal of Marketing Communications 14 (3) (2008) 225–241, https://doi.org/10.
1080/13527260701833839.
[23] M.A. Tuk, P.W.J. Verlegh, A. Smidts, D.H.J. Wigboldus, Interpersonal relationships
moderate the effect of faces on person judgments, European Journal of Social
Psychology 39 (5) (2009) 757–767, https://doi.org/10.1002/ejsp.576.
[24] J. Colliander, Socially acceptable? Exploring consumer responses to marketing in
social media, Ph.D. Stockholm School of Economics, Stockholm, Sweden, 2012.
[25] J. Colliander, S. Erlandsson, The blog and the bountiful: exploring the effects of
disguised product placement on blogs that are revealed by a third party, Journal of
Marketing Communications 21 (2) (2015) 110–124, https://doi.org/10.1080/

[26] M.C. Campbell, G.S. Mohr, P.W.J. Verlegh, Can disclosures lead consumers to resist
covert persuasion? The important roles of disclosure timing and type of response,
Journal of Consumer Psychology 23 (4) (2013) 483–495, https://doi.org/10.1016/
j.jcps.2012.10.012.
[27] C. Du Plessis, A.T. Stephen, Y. Bart, D. Goncalves, When in Doubt, Elaborate? How
Elaboration on Uncertainty Influences the Persuasiveness of Consumer-generated
Product Reviews When Reviewers are Incentivized, Saïd Business School WP, 2016
Retrieved from http://ssrn.com/abstract=2821641.
[28] M. Friestad, P. Wright, The persuasion knowledge model: how people cope with
persuasion attempts, Journal of Consumer Research 21 (1) (1994) 1–31, https://
doi.org/10.1086/209380.
[29] Y. Hwang, S.-H. Jeong, “This is a sponsored blog post, but all opinions are my own”:
the effects of sponsorship disclosure on responses to sponsored blog posts,
Computers in Human Behavior 62 (2016) 528–535, https://doi.org/10.1016/j.chb.
2016.04.026.
[30] S.C. Boerman, E.A. van Reijmersdal, P.C. Neijens, Sponsorship disclosure: effects of
duration on persuasion knowledge and brand responses, Journal of Communication
62 (6) (2012) 1047–1064, https://doi.org/10.1111/j.1460-2466.2012.01677.x.
[31] B.W. Wojdynski, N.J. Evans, Going native: effects of disclosure position and language on the recognition and evaluation of online native advertising, Journal of
Advertising 45 (2) (2016) 157–168, https://doi.org/10.1080/00913367.2015.
1115380.
[32] M.C. Campbell, A. Kirmani, Consumers’ use of persuasion knowledge: the effects of
accessibility and cognitive capacity on perceptions of an influence agent, Journal of
Consumer Research 27 (1) (2000) 69–83, https://doi.org/10.1086/314309.
[33] K.J. Main, D.W. Dahl, P.R. Darke, Deliberative and automatic bases of suspicion:
empirical evidence of the sinister attribution error, Journal of Consumer Psychology
17 (1) (2007) 59–69, https://doi.org/10.1207/s15327663jcp1701_9.
[34] H.H. Kelley, Causal Schemata and the Attribution Process, General Learning Press,
Morristown, NJ, 1972.
[35] Z.L. Tormala, P. Briñol, R.E. Petty, When credibility attacks: the reverse impact of
source credibility on persuasion, Journal of Experimental Social Psychology 42 (5)
(2006) 684–691, https://doi.org/10.1016/j.jesp.2005.10.005.
[36] R.E. Petty, P. Briñol, Z.L. Tormala, Thought confidence as a determinant of persuasion: the self-validation hypothesis, Journal of Personality and Social
Psychology 82 (5) (2002) 722–741, https://doi.org/10.1037/0022-3514.82.5.722.
[37] V.F. Ordenes, S. Ludwig, K. De Ruyter, D. Grewal, M. Wetzels, Unveiling what is
written in the stars: analyzing explicit, implicit, and discourse patterns of sentiment
in social media, Journal of Consumer Research 43 (6) (2017) 875–894.
[38] S. Ludwig, K. de Ruyter, M. Friedman, E.C. Brüggen, M. Wetzels, G. Pfann, More
than words: the influence of affective content and linguistic style matches in online
reviews on conversion rates, Journal of Marketing 77 (1) (2013) 87–103, https://
doi.org/10.1509/jm.11.0560.
[39] J.W. Pennebaker, R.J. Booth, R.L. Boyd, M.E. Francis, Linguistic Inquiry and Word
Count: LIWC2015, Pennebaker Conglomerates, Austin, TX, 2015.
[40] N.T. Bendle, P. Farris, P.E. Pfeifer, D.J. Reibstein, Marketing Metrics: The Manager’s
Guide to Measuring Marketing Performance, , Incorporated, 2016.
[41] N. Hu, I. Bose, N.S. Koh, L. Liu, Manipulation of online reviews: an analysis of
ratings, readability, and sentiments, Decision Support Systems 52 (3) (2012)
674–684, https://doi.org/10.1016/j.dss.2011.11.002.
[42] T.L. Harris, R.E. Hodges, The Literacy Dictionary: The Vocabulary of Reading and
Writing, (1995).
[43] S. Banerjee, A.Y.K. Chua, J.-J. Kim, Don’t be deceived: using linguistic analysis to
learn how to discern online review authenticity, Journal of the Association for
Information Science and Technology 68 (6) (2017) 1525–1538, https://doi.org/10.
1002/asi.23784.
[44] A.Y.K. Chua, S. Banerjee, Analyzing review efficacy on Amazon.com: does the rich
grow richer? Computers in Human Behavior 75 (2017) 501–509, https://doi.org/
10.1016/j.chb.2017.05.047.
[45] R. Gunning, The fog index after twenty years, Journal of Business Communication 6
(2) (1969) 3–13, https://doi.org/10.1177/002194366900600202.
[46] R. Senter, E.A. Smith, Automated Readability Index, (1967).
[47] M. Coleman, T.L. Liau, A computer readability formula designed for machine
scoring, Journal of Applied Psychology 60 (2) (1975) 283–284, https://doi.org/10.
1037/h0076540.
[48] N. Korfiatis, E. García-Bariocanal, S. Sánchez-Alonso, Evaluating content quality
and helpfulness of online product reviews: the interplay of review helpfulness vs.
review content, Electronic Commerce Research and Applications 11 (3) (2012)
205–217, https://doi.org/10.1016/j.elerap.2011.10.003.
[49] S. Park, J.L. Nicolau, Asymmetric effects of online consumer reviews, Annals of
Tourism Research 50 (2015) 67–83, https://doi.org/10.1016/j.annals.2014.10.
007.
[50] S.M. Mudambi, D. Schuff, What Makes a Helpful Review? (2010) (A study of customer reviews on Amazon. com).
[51] L.M. Willemsen, P.C. Neijens, F. Bronner, J.A. de Ridder, ‘Highly recommended!’
the content characteristics and perceived usefulness of online consumer reviews,
Journal of Computer-Mediated Communication 17 (1) (2011) 19–38, https://doi.
org/10.1111/j.1083-6101.2011.01551.x.
[52] P.B. Goes, M. Lin, Au Yeung, C.-M., “Popularity effect” in user-generated content:
evidence from online product reviews, Information Systems Research 25 (2) (2014)
222–238.
[53] Q. Cao, W. Duan, Q. Gan, Exploring determinants of voting for the “helpfulness” of
online user reviews: a text mining approach, Decision Support Systems 50 (2)
(2011) 511–521, https://doi.org/10.1016/j.dss.2010.11.009.
[54] S.-M. Kim, P. Pantel, T. Chklovski, M. Pennacchiotti, Automatically assessing

[55] N.J. Salkind, Encyclopedia of Research Design, (2010).
[56] B. Derrick, D. Toher, P. White, Why Welch’s test is type I error robust, The
Quantitative Methods in Psychology 12 (1) (2016) 30–38.
[57] S. Brady, M. Lerigo-Jones, An examinination into consumer attitudes towards
sponsored online content from social media influencers, Journal of Research Studies
in Business and Management (2017) 3.
[58] J. Wang, A. Ghose, P. Ipeirotis, Bonus, disclosure, and choice: what motivates the
creation of high-quality paid reviews? Paper Presented at the International
Conference on Information Systems (ICIS), 2012.
[59] S.C. Boerman, L.M. Willemsen, E.P. Van Der Aa, “This post is sponsored”: effects of
sponsorship disclosure on persuasion knowledge and electronic word of mouth in
the context of Facebook, Journal of Interactive Marketing 38 (2017) 82–92, https://
doi.org/10.1016/j.intmar.2016.12.002.
[60] P.W.J. Verlegh, G. Ryu, M.A. Tuk, L. Feick, Receiver responses to rewarded referrals: the motive inferences framework, Journal of the Academy of Marketing
Science 41 (6) (2013) 669–682, https://doi.org/10.1007/s11747-013-0327-8.
[61] G. Reeder, Mindreading: judgments about intentionality and motives in dispositional inference, Psychological Inquiry 20 (1) (2009) 1–18, https://doi.org/10.
1080/10478400802615744.
[62] H. Hong, D. Xu, G.A. Wang, W. Fan, Understanding the determinants of online
review helpfulness: a meta-analytic investigation, Decision Support Systems (2017),
https://doi.org/10.1016/j.dss.2017.06.007.
[63] S. Banerjee, S. Bhattacharyya, I. Bose, Whose online reviews to trust?
Understanding reviewer trustworthiness and its impact on business, Decision
Support Systems 96 (2017) 17–26, https://doi.org/10.1016/j.dss.2017.01.006.
[64] Y.-S. Lim, B. Van Der Heide, Evaluating the wisdom of strangers: the perceived
credibility of online consumer reviews on yelp, Journal of Computer-Mediated
Communication 20 (1) (2015) 67–82, https://doi.org/10.1111/jcc4.12093.
[65] L. Bergkvist, J.R. Rossiter, Tailor-made single-item measures of doubly concrete
constructs, International Journal of Advertising 28 (4) (2009) 607–621, https://doi.
org/10.2501/S0265048709200783.
[66] T.E. Decarlo, R.N. Laczniak, T.W. Leigh, Selling financial services: the effect of
consumer product knowledge and salesperson commission on consumer suspicion
and intentions, Journal of the Academy of Marketing Science 41 (4) (2013)
418–435, https://doi.org/10.1007/s11747-012-0319-0.
[67] R.D. Ahuja, T.A. Michels, M.M. Walker, M. Weissbuch, Teen perceptions of disclosure in buzz marketing, Journal of Consumer Marketing 24 (3) (2007) 151–159,
https://doi.org/10.1108/07363760710746157.
[68] R.B. Cialdini, Influence: How and Why People Agree to Things, 1st ed., Morrow,
New York, 1984.
[69] D.S. Sundaram, K. Mitra, C. Webster, Word-of-mouth communications: a motivational analysis, Advances in Consumer Research 25 (1) (1998) 527–531.
[70] M.R. Forehand, S. Grier, When is honesty the best policy? The effect of stated
company intent on consumer skepticism, Journal of Consumer Psychology 13 (3)
(2003) 349–356, https://doi.org/10.1207/s15327663jcp1303_15.
[71] E. Nekmat, K.K. Gower, Effects of disclosure and message valence in online word-ofmouth (ewom) communication: implications for integrated marketing communication, International Journal of Integrated Marketing Communications 4 (1)
(2012) 85–98.

[72] S.N. Ahmad, M. Laroche, Analyzing electronic word of mouth: a social commerce
construct, International Journal of Information Management 37 (3) (2017)
202–213, https://doi.org/10.1016/j.ijinfomgt.2016.08.004.
[73] S.N. Ahmad, Uncovering the paths to helpful reviews using fuzzy-set qualitative
comparative analysis, Journal of Marketing Analytics 5 (2) (2017) 47–56, https://
doi.org/10.1057/s41270-017-0015-5.
[74] C.T. Carr, R.A. Hayes, The effect of disclosure of third-party influence on an opinion
leader’s credibility and electronic word of mouth in two-step flow, Journal of
Interactive Advertising 14 (1) (2014) 38–50, https://doi.org/10.1080/15252019.
2014.909296.
[75] Y. Trope, N. Liberman, Construal-level theory of psychological distance,
Psychological Review 117 (2) (2010) 440–463, https://doi.org/10.1037/
a0018963.
[76] Z. Liu, S. Park, What makes a useful online review? Implication for travel product
websites, Tourism Management 47 (2015) 140–151, https://doi.org/10.1016/j.
tourman.2014.09.020.
[77] S. Perez, Amazon Bans Incentized Reviews Tied to Free or Discounted Products,
Retrieved from, Oct 3, 2016. https://techcrunch.com/2016/10/03/amazon-bansincentivized-reviews-tied-to-free-or-discounted-products/.
[78] D.J. Bosman, C. Boshoff, G.-J. van Rooyen, The review credibility of electronic
word-of-mouth communication on e-commerce platforms, Management Dynamics
22 (3) (2013) 29–44.
[79] P.M. Herr, F.R. Kardes, J. Kim, Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnosticity perspective, Journal of
Consumer Research 17 (4) (1991) 454–462, https://doi.org/10.1086/208570.

The influence of e-word-of-mouth on hotel occupancy rate

Viglia G, Minazzi R, Buhalis D, (2016), The influence of e-word-of-mouth on hotel occupancy rate, International Journal of Contemporary Hospitality Management, Vol. 28, pp. 2035-2051

Mots-clefs : avis en ligne, taux d’occupation, prise de décision, score de l’avis, note, bouche à oreille électronique, eWOM, organiques, intrinsèques, amplifiées, extrinsèques.

Résumé : Cette étude a pour but de d’étudier et de définir les effets des avis en ligne sur le taux d’occupation des hôtels car les évaluations en ligne des consommateurs sont devenues de plus en plus importantes pour la prise de décision des consommateurs. Cette étude se base sur le score de l’avis, la variance de l’avis et le volume de l’avis pour mesures ces effets.

Le contenu en ligne provenant des utilisateurs a remplacé les examinateurs professionnels car ceux-ci offrent des informations semblant plus concrètes, variées et moins portée par une volonté commerciale.
Dans le cadre de l’hotellerie, les avis en ligne sont considérés comme essentiels notamment en raison de l’investissement financier du consommateur, plus élevé qu’un achat moyen.

Des études récentes ont identifié deux types différents de bouche à oreille électronique (eWOM) : “organiques/intrinsèques” et “amplifiées/extrinsèques”. “Dans le premier cas, la WOM se produit spontanément par le client, tandis que dans le second cas, l’entreprise incite les clients à accélérer la propagation de la WOM (Godes et Mayzlin, 2004 ; Libai et al., 2010).”

Conclusion : Selon cette étude la note en ligne est celle qui a le plus d’influence. L’étude prouve qu’une augmentation d’un point du score de révision est associée à une augmentation du taux d’occupation de 7,5 points de pourcentage. L’article prouve également que le nombre d’examen a un effet positif sur le remplissage des hôtels, indépendamment de la note. Cependant plus il y a d’avis et commentaires plus l’effet bénéfique en termes de taux d’occupation est faible.

Sources :

Akerlof, G.A. (1970), “The market for ‘lemons’: quality uncertainty and the market mechanism”, The Quarterly Journal of Economics, Vol. 83 No. 3, pp. 488-500.

Ali, R. (2014), “The most popular online booking sites in travel”, 2014 Edition, Skift, available at: http://skift.com/2014/06/17/the-most-popular-online-booking-sites-in-travel-2014-edition/ (accessed 19 September 2014).

Anderson, C.K. (2012), “The impact of social media on lodging performance”, Cornell Hospitality Report, Vol. 12 No. 5, pp. 4-12.

Anderson, E.W. (1998), “Customer satisfaction and word of mouth”, Journal of Service Research, Vol. 1 No. 1, pp. 5-17.

Ariffin, A.A.M. and Maghzi, A. (2012), “A preliminary study on customer expectations of hotel hospitality: influences of personal and hotel factors”, International Journal of Hospitality Management, Vol. 31 No. 1, pp. 191-198.

Ba, S. and Pavlou, P.A. (2002), “Evidence of the effect of trust building technology in electronic markets: price premiums and buyer behaviour”, MIS Quarterly, Vol. 26 No. 3, pp. 243-268.

Banerjee, A. and Fudenberg, D. (2004), “Word-of-mouth learning”, Games and Economic Behavior, Vol. 46 No. 1, pp. 1-22.

Bilotkach, V., Gaggero, A.A. and Piga, C.A. (2015), “Airline pricing under different market conditions: evidence from European low-cost carriers”, Tourism Management, Vol. 47, pp. 152-163.

Blal, I. and Sturman, M.C. (2014), “The differential effects of the quality and quantity of online reviews on hotel room sales”, Cornell Hospitality Quarterly, Vol. 55 No. 4, pp. 365-375.

Book, L.A., Tanford, S., Montgomery, R. and Love, C. (2015), “Online traveler reviews as social influence: price is no longer king”, Journal of Hospitality & Tourism Research, Vol. 12 No. 5, Published online before print 30 July, doi: 10.1177/1096348015597029.

Buhalis, D. and Law, R. (2008), “Progress in information technology and tourism management: 20 years on and 10 years after the internet – the state of eTourism research”, Tourism Management Vol. 29 No. 4, pp. 609-623.

Buttle, F. (1998), “Word of mouth: understanding and managing referral marketing”, Journal of Strategic Marketing, Vol. 6 No. 3, pp. 241-254.

Chatterjee, P. (2001), “Online reviews: do consumers use them?”, Advances in Consumer Research, Vol. 28 No. 1, pp. 129-133.

Cheung, C.M. and Thadani, D.R. (2012), “The impact of electronic word-of-mouth communication: a literature analysis and integrative model”, Decision Support Systems, Vol. 54 No. 1, pp. 461-470.

Cheung, M.Y., Luo, C., Sia, C.L. and Chen, H. (2009), “Credibility of electronic word-of- mouth: informational and normative determinants of on-line consumer recommendations”, International Journal of Electronic Commerce, Vol. 13 No. 4, pp. 9-38.

Chevalier, J.A. and Mayzlin, D. (2006), “The effect of word of mouth on sales: online book reviews”, Journal of Marketing Research, Vol. 43 No. 3, pp. 345-354.

Chintagunta, P.K., Gopinath, S. and Venkataraman, S. (2010), “The effects of online user reviews on movie box office performance: accounting for sequential rollout and aggregation across local markets”, Marketing Science, Vol. 29 No. 5, pp. 944-959.

Dellarocas, C. (2003), “The digitization of word of mouth: promise and challenges of online feedback mechanisms”, Management science, Vol. 49 No. 10, pp. 1407-1424.

Dellarocas, C., Zhang, X.M. and Awad, N.F. (2007), “Exploring the value of online product review in forecasting sales: the case of motion pictures”, Journal of Interactive Marketing, Vol. 21 No. 4, pp. 23-45.

Doh, S.J. and Hwang, J.S. (2009), “How consumers evaluate eWOM (electronic word-of-mouth) messages”, Cyberpsychology & Behavior, Vol. 12 No. 2, pp. 193-197.

Duan, W., Gu, B. and Whinston, A.B. (2008), “Do online reviews matter? – An empirical investigation of panel data”, Decision Support Systems, Vol. 45 No. 4, pp. 1007-1016.

EBTL (2014), “Analisi della domanda turistica negli esercizi alberghieri di Roma e provincia anno 2014”, Il Turismo in Cifre, Rome, pp. 1-36, available at: www.ebtl.it/roma-e-lazio/anno-2013/cat_view/35-osservatorio-roma/217-esercizi-alberghieri-di-roma-anno-2014/219-analisi-della-domanda-turistica-2014.html (accessed 19 September 2014).

Eliashberg, J. and Shugan, M. (1997), “Film critics: influencers or predictors?”, Journal of Marketing, Vol. 61 No. 2, pp. 68-78.

Fan, Y.W., Miao, Y.F., Fang, Y.H. and Lin, R.Y. (2013), “Establishing the adoption of electronic word-of-mouth through consumers’ perceived credibility”, International Business Research, Vol. 6 No. 3, pp. 58-65.

Filieri, R. (2015), “What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM”, Journal of Business Research, Vol. 68 No. 6, pp. 1261-1270.

Filieri, R. and McLeay, F. (2014), “E-WOM and accommodation an analysis of the factors that influence travelers’ adoption of information from online reviews”, Journal of Travel Research, Vol. 53 No. 1, pp. 44-57.

Godes, D. and Mayzlin, D. (2004), “Using online conversations to study word-of-mouth communication”, Marketing Science Vol. 23 No. 4, pp. 545-560.

Gretzel, U. and Yoo, K.H. (2008), “Use and impact of online travel reviews”, Information and Communication Technologies in Tourism, Vol. 2 No. 1, pp. 35-46.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (1992), Multivariate Data Analysis, Prentice Hall, New York, NY.

Hu, N., Pavlou, P.A. and Zhang, J. (2009), “Overcoming the J-shaped distribution of product reviews”, Communications of the ACM, Vol. 52 No. 10, pp. 144-147.

Hua, N., Morosan, C. and DeFranco, A. (2015), “The other side of technology adoption: examining the relationships between e-commerce expenses and hotel performance”, International Journal of Hospitality Management, Vol. 45, pp. 109-120.

IBM (2010), “Transforming different Likert scales to a common scale”, available at: www-01.ibm.com/support/docview.wss?uid=swg21482329 (accessed 30 July 2015).

Inversini, A., Marchiori, E., Dedekind, C. and Cantoni, L. (2010), “Applying a conceptual framework to analyze online reputation of tourism destinations”, in Gretzel, U., Law, R. and Fuchs, M. (Eds), Information and Communication Technologies in Tourism 2010: Proceedings of the International Conference, Lugano, 10-12 February, Springer, Wien – New York, pp. 321-332.

Jun, S.H., Vogt, C.A. and MacKay, K.J. (2007), “Relationships between travel information search and travel product purchase in pre-trip contexts”, Journal of Travel Research, K.J., Vol. 45 No. 3, pp. 266-274.

Kim, D., Jang, S. and Adler, H. (2015b), “What drives café customers to spread eWOM? Examining self-relevant value, quality value, and opinion leadership”, International Journal of Contemporary Hospitality Management, Vol. 27 No. 2, pp. 261-282.

Kim, W.G., Limb, H. and Brymer, R.A. (2015a), “The effectiveness of managing social media on hotel performance”, International Journal of Hospitality Management, Vol. 44 No. 1, pp. 165-171.

Kimes, S.E. (2011), “The future of hotel revenue management”, Journal of Revenue and Pricing Management, Vol. 10 No. 1, pp. 62-72.

Ladhari, R. and Michaud, M. (2015), “eWOM effects on hotel booking intentions, attitudes, trust, and website perceptions”, International Journal of Hospitality Management, Vol. 46 No. 1, pp. 6-45.

Law, R. and Jogaratnam, G. (2005), “A study of hotel information technology applications”, International Journal of Contemporary Hospitality Management, Vol. 17 No. 2, pp. 170-180.

Law, R., Leung, R. and Buhalis, D. (2008), “Information technology applications in hospitality and tourism: a review of publications from 2005 to 2007”, Journal of Travel and Tourism Marketing, Vol. 26 No. 5, pp. 599-623.

Li, X. and Hitt, L.M. (2010), “Price effects in online product reviews: an analytical model and empirical analysis”, MIS Quarterly, Vol. 34 No. 4, pp. 809-831.

Libai, B., Bolton, R., Bügel, M.S. de Ruyter, K., Götz, O., Risselada, H. and Stephen, A.T. (2010), “Customer-to-customer interactions: broadening the scope of word of mouth research”, Journal of Service Research, Vol. 13 No. 3, pp. 267-282.

Litvin, S.W., Goldsmith, R.E. and Pan, B. (2008), “Electronic word-of-mouth in hospitality and tourism management”, Tourism Management, Vol. 29 No. 3, pp. 458-468.

Liu, W., Guillet, B.D., Xiao, Q. and Law, R. (2014), “Globalization or localization of consumer preferences: the case of hotel room booking”, Tourism Management, Vol. 41 No. 1, pp. 148-157.

Liu, Y. (2006), “Word of mouth for movies: its dynamics and impact on box office revenue”, Journal of Marketing, Vol. 70 No. 3, pp. 74-89.

Lopez Fernandez, M.C. and Serrano Bedia, A.M. (2004), “Is the hotel classification system a good indicator for quality? An application in Spain”, Tourism Management, Vol. 25 No. 6, pp. 771-775.

Mangold, W.G. and Faulds, D.J. (2009), “Social media: the new hybrid element of the promotion mix”, Business horizons Vol. 52 No. 4, pp. 357-365.

Mauri, A. and Minazzi, R. (2013), “Web reviews influence on expectations and purchasing intentions of hotel potential customers”, International Journal of Hospitality Management Vol. 34 No. 1, pp. 99-107.

Minazzi, R. (2015), Social Media Marketing in Tourism and Hospitality, Springer International Publishing, AG.

Moe, W.W. and Trusov, M. (2011), “The value of social dynamics in online product ratings forums”. Journal of Marketing Research, Vol. 48 No. 3, pp. 444-456.

Moon, S., Bergey, P.K. and Iacobucci, D. (2010), “Dynamic effects among movie ratings, movie revenues, and viewer satisfaction”, Journal of Marketing, Vol. 74 No. 1, pp. 108-121.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of consumer reviews on amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Nicolau, J.L. and Sellers, R. (2010), “The quality of quality awards: diminishing information asymmetries in a hotel chain”, Journal of Business Research, Vol. 63 No. 8, pp. 832-839.

Nielsen (2013), “State of the media: the social media report 2012”, available at: www.nielsen.com/us/en/reports/2012/state-of-the-media-the-social-media-report-2012.html, (accessed August 2013).

Noone, B.M. and McGuire, K.A. (2013), “Pricing in a social world: the influence of non-price information on hotel choice”, Journal of Revenue Pricing Management, Vol. 12 No. 5, pp. 385-401.

Noone, B.M., McGuire, K.A. and Rohlfs, K.V. (2011), “Social media meets hotel revenue management: opportunities, issues and unanswered questions”, Journal of Revenue and Pricing Management, Vol. 10 No. 4, pp. 293-305.

Ogden, M. (2001), “Marketing truth: hearing is believing”, The Business Journal Vol. 16 No. 52, p. 17.

Öğüt, H. and Onur Taş, B.K. (2012), “The influence of internet customer reviews on the online sales and prices in hotel industry”, The Service Industries Journal, Vol. 32 No. 2, pp. 197-214.

O’Neill, J.W. and Mattila, A.S. (2010), “Hotel brand strategy”, Cornell Hospitality Quarterly Vol. 51 No. 1, pp. 27-34.

O’Neill, J.W. and Xiao, Q. (2006), “The role of brand affiliation in hotel market value”, Cornell Hotel and Restaurant Administration Quarterly, Vol. 47 No. 3, pp. 210-223.

Papathanassis, A. and Knolle, F. (2011), “Exploring the adoption and processing of online holiday reviews: a grounded theory approach”, Tourism Management, Vol. 32 No. 2, pp. 215-224.

Park, D.H., Lee, J. and Han, I. (2007), “The effect of on-line consumer reviews on consumer purchasing intention: the moderating role of involvement”, International Journal of Electronic Commerce, Vol. 11 No. 4, pp. 125-148.

Phillips, P., Zigan, K. Silva, M.M.S. and Schegg, R. (2015), “The interactive effects of online reviews on the determinants of Swiss hotel performance: a neural network analysis”, Tourism Management, Vol. 50 No. 1, pp. 130-141.

Sainaghi, R. (2010), “Hotel performance: state of the art”, International Journal of Contemporary Hospitality Management, Vol. 22 No. 7, pp. 920-952.

Sourouklis, C. and Tsagdis, D. (2013), “Workforce diversity and hotel performance: a systematic review and synthesis of the international empirical evidence”, International Journal of Hospitality Management, Vol. 34 No. 1, pp. 394-403.

Sparks, B.A. and Browning, V. (2011), “The impact of online reviews on hotel booking intentions and perception of trust”, Tourism Management, Vol. 32 No. 6, pp. 1310-1323.

Sparks, B.A., Perkins, H.E. and Buckley, R. (2013), “Online travel reviews as persuasive communication: the effects of content type, source, and certification logos on consumer behaviour”, Tourism Management, Vol. 39, pp. 1-9.

Stern, B. (1994), “A revised model for advertising: multiple dimensions of the source, the message, and the recipient”, Journal of Advertising, Vol. 23 No. 2, pp. 5-16.

Sun, M. (2012), “How does the variance of product ratings matter?”, Management Science, Vol. 58 No. 4, pp. 696-707.

Tsao, W.C., Hsieh, M.T., Shih, L.W. and Lin, T.M. (2015), “Compliance with eWOM: the influence of hotel reviews on booking intention from the perspective of consumer conformity”, International Journal of Hospitality Management, Vol. 46 No. 1, pp. 99-111.

Vermeulen, I.E. and Seegers, D. (2009), “Tried and tested: the impact of online hotel reviews on consumer consideration”, Tourism Management, Vol. 30 No. 1, pp. 123-127.

Viglia, G. (2014), Pricing, Online Marketing Behavior, and Analytics, Palgrave Macmillan, Basingstoke.

Viglia, G., Furlan, R. and Ladrón-de-Guevara, A. (2014), “Please, talk about it! When hotel popularity boosts preferences”, International Journal of Hospitality Management, Vol. 42 No. 1, pp. 155-164.

Webster, C. (1991), “Influences upon consumer expectations of services”, Journal of Services Marketing, Vol. 5 No. 1, pp. 516-533.

Ye, Q., Law, R. and Gu, B. (2009), “The impact of online user reviews on hotel room sales”, International Journal of Hospitality Management, Vol. 28 No. 1, pp. 180-182.

Ye, Q., Li, H., Wang, Z. and Law, R. (2014), “The influence of hotel price on perceived service quality and value in e-tourism an empirical investigation based on online traveller reviews”, Journal of Hospitality & Tourism Research, Vol. 38 No. 1, pp. 23-39.

Zeithaml, V.A., Berry, L.L. and Parasuraman, A. (1993), “The nature and determinants of customer expectations of service”, Journal of the Academy of Marketing Science, Vol. 21 No. 1, pp. 1-12.

Zhang, W. and Watts, S.A. (2008), “Capitalizing on content: information adoption in two online communities”, Journal of the Association for Information Systems, Vol. 9 No. 2, p. 73.

Zhang, Z., Ye, Q. and Law, R. (2011), “Determinants of hotel room price: an exploration of travelers’ hierarchy of accommodation needs”, International Journal of Contemporary Hospitality Management, Vol. 23 No. 7, pp. 972-981.

Zhao, X., Wang, L., Guo, X. and Law, R. (2015), “The influence of online reviews to online hotel booking intentions”, International Journal of Contemporary Hospitality Management, Vol. 27 No. 3, pp. 1343-1364.

Factors contributing to the helpfulness of online hotel reviews: Does manager response play a role?

Kwok L, Xie K. L, (2016), Factors contributing to the helpfulness of online hotel reviews: Does manager response play a role?, International Journal of Contemporary Hospitality Management, Vol.28,

Mots-clefs : facteurs, évaluations en ligne, managers, utilité, source de l’avis

Résumé : Cet article a pour but de définir les facteurs qui contribuent à l’utilité des évaluations d’hotels en ligne et à évaluer l’impact des réponses par les managers.
Cette étude tente d’expliquer comment les directeurs d’hôtels peuvent identifier les leaders d’opinion parmi les consommateurs et utiliser la réponse des directeurs pour influencer l’utilité des avis des consommateurs.

Cet article se démarque des autres en évaluant les facteurs contribuant à l’utilité des évaluations en ligne. Il démontre que les consommateurs ont tendance à percevoir les avis négatifs comme plus utiles que les avis positifs. Les études précédentes ont seulement confirmé que la divulgation des informations démographiques des évaluateurs, telles que le sexe, ferait une différence dans la notation de l’utilité des évaluations, sans examiner les différences entre les sexes. Cette étude explique que les examinateurs masculins ont plus d’influence que les examinateurs féminins sur ce contenu. Il est probable que les examinateurs masculins ont tendance à présenter des opinions plus factuelles et moins perceptives que les examinatrices féminines, ce qui rend leurs examens plus utiles que ceux rédigés par les examinatrices féminines

Les évaluateurs qui ont rédigé plus d’évaluations, qui ont été plus longtemps avec TripAdvisor et qui ont visité plus de villes ont tendance à fournir des évaluations plus utiles. La source de l’avis est donc essentielle.

Les avis de consommateurs traités par la réponse du manager comprennent souvent des plaintes ou des compliments spécifiques et détaillés, fournissant ainsi une plus grande valeur de référence pour les consommateurs ultérieurs. La réponse du responsable joue donc un rôle très important dans le renforcement de l’information ou la validation croisée des informations des évaluations des consommateurs.

Conclusion : Les résultats révèlent l’impact significatif de plusieurs facteurs sur l’utilité des évaluations en ligne, notamment la notation, le nombre de mots, le sexe de l’évaluateur, l’expérience de l’évaluateur en matière de statut, l’adhésion et les villes visitées, ainsi que la réponse du manager.

Sources :

Andreassen, T.W. (2000), “Antecedents to satisfaction with service recovery”, European Journal of Marketing, Vol. 34 Nos 1/2, pp. 156-175.

Ashforth, B.E. and Mael, F. (1989), “Social identity theory and the organization”, Academy of Management Review, Vol. 14 No. 1, pp. 20-39.

Becker, G.S. (1976), The Economic Approach to Human Behavior, University of Chicago Press, Chicago, IL.

Bradley, G.L., Sparks, B.A. and Weber, K. (2015), “The stress of anonymous online reviews: a conceptual model and research agenda”, International Journal of Contemporary Hospitality Management, Vol. 27 No. 5, pp. 739-755.

Brownlow, S. and Zebrowitz, L.A. (1990), “Facial appearance, gender, and credibility in television commercials”, Journal of Nonverbal Behavior, Vol. 14 No. 1, pp. 51-60.

Burkhart, F. (1989), “When readers prefer women”, Editor and Publisher, Vol. 64, pp. 54.

Byrne, D. (1971), The Attraction Paradigm, Academic Press, New York, NY.

Cantallops, A.S. and Salvi, F. (2014), “New consumer behavior: a review of research on eWOM and hotels”, International Journal of Hospitality Management, Vol. 36 No. 1, pp. 41-51.

Chaiken, S. (1987), “The heuristic model of persuasion”, in Zanna, M.P., Tory Higgins, E. and Herman, C.P. (Eds), Social Influence: The Ontario Symposium, Vol. 4, Lawrence Erlbaum Associates, Hillsdale, NJ.

Chan, K.K. and Misra, S. (1990), “Characteristics of the opinion leader: a new dimension”, Journal of Advertising, Vol. 19 No. 6, pp. 53-60.

Cheema, A. and Papatla, P. (2010), “Relative importance of online versus offline information for internet purchases: product category and Internet experience effects”, Journal of Business Research, Vol. 63 Nos 9/10, pp. 979-985.

Cheng, S., Lam, T. and Hsu, C.H.C. (2006), “Negative word-of-mouth communication intention: an application of the theory of planned behavior”, Journal of Hospitality & Tourism Research, Vol. 30 No. 1, pp. 95-116.

Chevalier, J.A. and Mayzlin, D. (2006), “The effect of word of mouth on sales: online book reviews”, Journal of Marketing Research, Vol. 43 No. 3, pp. 345-354.

Chua, A.Y.K. and Banerjee, S. (2014), “Developing a theory of diagnosticity for online reviews”, Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. 1, pp. 477-482.

Daft, R.L. and Lengel, R.H. (1986), “Organizational information requirements, media richness and structural design”, Management Science, Vol. 32 No. 5, pp. 554-571.

Duan, W., Gu, B. and Whinston, A.B. (2008), “The dynamics of online word-of-mouth and product sales:an empirical investigation of the movie industry”, Journal of Retailing, Vol. 84 No. 2, pp. 233-242.

Flanagin, A.J. and Metzger, M.J. (2003), “The perceived credibility of personal web page information as influenced by the sex of the source”, Computer in Human Behavior, Vol. 19 No. 6, pp. 683-701.

Ghose, A. and Ipeirotis, P. (2007), “Designing novel review ranking systems: predicting the usefulness and impact of reviews”, ICEC 2007, Minneapolis, MN.

Grazian, F. (1996), “Frequently asked questions (FAQ) about readability”, Public Relations Quarterly, Vol. 41 No. 3, pp. 19-20.

Gu, B. and Ye, Q. (2014), “First step in social media: measuring the influence of online management responses on customer satisfaction”, Production and Operations Management, Vol. 23 No. 4, pp. 570-582.

Gupta, P. and Harris, J. (2010), “How e-WOM recommendations influence product consideration and quality of choice: a motivation to process information perspective”, Journal of Business Research, Vol. 63 Nos 9/10, pp. 1041-1049.

Hennig-Thurau, T. and Walsh, G. (2003), “Electronic word-of-mouth: motives for and consequences of reading customer articulations on the internet”, International Journal of Electronic Commerce, Vol. 8 No. 2, pp. 51-74.

Huang, Y.K. and Kwok, L. (2013), “Information sources for trust judgment in managerial relationships over time: a conceptual analysis”, Journal of Behavioral and Applied Management, Vol. 14 No. 2, pp. 140-160.

Ishikawa, Y. (2015), “Gender differences in vocabulary use in essay writing among university students”, Procedia – Social and Behavioral Sciences, Vol. 192, pp. 593-600.

Johnson, E.J. and Payne, J.W. (1985), “Effort and accuracy in choice”, Management Science, Vol. 31 No. 4, pp. 395-414.

Jones, S.C. (1966), “Some determinants of interpersonal evaluating behavior”, Journal of Personality And Social Psychology, Vol. 3 No. 4, pp. 397-403.

Kim, W.G., Lim, H. and Brymer, R.A. (2015), “The effectiveness of managing social media on hotel performance”, International Journal of Hospitality Management, Vol. 44, pp. 165-171.

Kite, M., Stockdale, G., Whitley, B. and Johnson, B. (2005), “Attitudes toward younger and older adults: an updated meta-analytic review”, Journal of Social Issues, Vol. 61 No. 2, pp. 241-266.

Korfiatis, N., García-Bariocanal, E. and Sánchez-Alonso, S. (2012), “Evaluating content quality and helpfulness of online product reviews: the interplay of review helpfulness vs review content.” Electronic Commerce Research and Applications, Vol. 11 No. 3, pp. 205-217.

Kusumasondjaja, S., Shanka, T. and Marchegiani, C. (2012), “Credibility of online reviews and initial trust The roles of reviewer’s identity and review valence”, Journal of Vacation Marketing, Vol. 18 No. 3, pp. 185-195.

Kwok, L. and Yu, B. (2013), “Spreading social media messages on Facebook: an analysis of restaurant business-to-consumer communications”, Cornell Hospitality Quarterly, Vol. 54 No. 1, pp. 84-94.

Kwok, L. and Yu, B. (2016), “Taxonomy of Facebook messages in business-to-consumer communications: what really works?”, Tourism and Hospitality Research, Vol. 16 No. 4, pp. 311-328.

Kwok, L., Zhang, F., Huang, Y.K., Yu, B., Maharabhushanam, P. and Rangan, K. (2015), “Documenting business-to-consumer (B2C) communications on Facebook: what have changed among restaurants and consumers?”, Worldwide Hospitality and Tourism Themes, Vol. 7 No. 3, pp. 283-294.

Lee, H.A., Law, R. and Murphy, J. (2011), “Helpful reviewers in TripAdvisor: an online travel community”, Journal of Travel & Tourism Marketing, Vol. 28 No. 7, pp. 675-688.

Levy, S.E., Duan, W. and Boo, S. (2013), “An analysis of one-star online reviews and responses in the Washington DC lodging market”, Cornell Hospitality Quarterly, Vol. 54 No. 1, pp. 49-63.

Li, Y.M., Lin, C.H. and Lai, C.Y. (2010), “Identifying influential reviews for word-of-mouth marketing”, Electronic Commerce Research and Applications, Vol. 9 No. 4, pp. 294-304.

Liu, Z. and Park, S. (2015), “What makes a useful online review? Implication for travel product websites”, Tourism Management, Vol. 47, pp. 140-151.

Mattila, A.S. and Mount, D.J. (2003), “The impact of selected customer characteristics and response time on e-complaint satisfaction and return intent”, International Journal of Hospitality Management, Vol. 22 No. 2, pp. 135-145.

Maxham, J.G. (2001), “Service recovery’s influence on consumer satisfaction, positive word-of-mouth, and purchase intentions”, Journal of Business Research, Vol. 54 No. 1, pp. 11-24.

Mizerski, R. (1982), “An attribution explanation of the disproportionate influence of unfavorable information”, Journal of Consumer Research, Vol. 9 No. 3, pp. 301-310.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

O’Mahony, M.P., Cunningham, P. amd Smyth, B. (2010), Predicting Helpful Product Reviews, Research Repository University College Dublin, Dublin, available at: http://irserver.ucd.ie/bitstream/handle/10197/2514/aics-2010b-crc.pdf?sequence=1

Park, S.Y. and Allen, J.P. (2013), “Responding to online reviews: problem solving and engagement in hotels”, Cornell Hospitality Quarterly, Vol. 54 No. 1, pp. 64-73.

Park, S. and Nicolau, J.L. (2015), “Asymmetric effects of online consumer reviews”, Annals of Tourism Research, Vol. 50 No. 1, pp. 67-83.

Purnawirawan, N., De Pelsmacker, P. and Dens, N. (2012), “Balance and sequence in online reviews: how perceived usefulness affects attitudes and intentions”, Journal of Interactive Marketing, Vol. 26 No. 4, pp. 244-255.

Racherla, P. and Friske, W. (2012), “Perceived ‘usefulness’ of online consumer reviews: an exploratory investigation across three services categories”, Electronic Commerce Research and Applications, Vol. 11 No. 6, pp. 548-559.

Ren, Y., Kraut, R.E. and Kiesler, S. (2007), “Applying common identity and bond theory to design of online communities”, Organization Studies, Vol. 28 No. 3, pp. 377-408.

Schindler, R.M. and Bickart, B. (2012), “Perceived helpfulness of online consumer reviews: the role of message content and style”, Journal of Consumer Behaviour, Vol. 11 No. 3, pp. 234-243.

Sen, S. and Lerman, D. (2007), “Why are you telling me this? An examination into negative consumer reviews on the Web”, Journal of Interactive Marketing, Vol. 21 No. 4, pp. 76-94.

Shelat, B. and Egger, F. (2002), “What makes people trust online gambling sites?”, Conference on Human Factors in Computing Systems, New York, NY, pp. 852-853.

Vermeulen, I.E. and Seegers, D. (2009), “Tried and tested: the impact of online hotel reviews on consumer considerations”, Tourism Management, Vol. 30 No. 1, pp. 123-127.

Wei, W., Miao, L. and Huang, Z. (2013), “Customer engagement behaviors and hotel responses”, International Journal of Hospitality Management, Vol. 33 No. 1, pp. 316-330.

Xiang, Z., Schwartz, Z., Gerdes, J.H. Jr. and Uysal, M. (2015), “What can big data and text analytics tell us about hotel guest experience and satisfaction?”, International Journal of Hospitality Management, Vol. 44, pp. 120-130.

Xie, K.L., Zhang, Z. and Zhang, Z. (2014), “The business value of online consumer reviews and management response to hotel performance”, International Journal of Hospitality Management, Vol. 43, pp. 1-12.

Ye, Q., Law, R., Gu, B. and Chen, W. (2011), “The influence of user-generated content on traveler behavior: an empirical investigation on the effects of e-word-of-mouth to hotel online bookings”, Computers in Human Behavior, Vol. 27 No. 2, pp. 634-639.

Zhang, Z., Ye, Q. and Law, R. (2011), “Determinants of hotel room price: an exploration of travelers’ hierarchy of accommodation needs”, International Journal of Contemporary Hospitality Management, Vol. 23 No. 7, pp. 972-981.

Zhao, X., Wang, L., Guo, X. and Law, R. (2015), “The influence of online reviews to online hotel booking intentions”, International Journal of Contemporary Hospitality Management, Vol. 27 No. 6, pp. 1343-1346.

The impact of source credible online reviews on purchase intention: The mediating roles of brand equity dimensions

Chakraborty U, (2019), The impact of source credible online reviews on purchase intention: The mediating roles of brand equity dimensions, Journal of Research in Interactive Marketing, Vol.13, pp 142-161.

Mots-clefs : capital de marque, avis en ligne, intention d’achat, notoriété de la marque, la valeur perçue de la marque,

Résumé : Cette étude a pour but de souligner l’importance des dimensions du capital de marque qui jouent un rôle de médiateur entre les avis en ligne et l’intention d’achat du consommateur. De nombreux consommateurs considèrent les avis en ligne comme une source d’information plus crédible que les autres sources d’information traditionnelles (Fang et al., 2016).
Les consommateurs ont le plus haut niveau de confiance dans les canaux partagés comme les évaluations des consommateurs en ligne ou les médias sociaux. Les consommateurs recherchent généralement les opinions et les recommandations d’autres consommateurs pour évaluer la performance de la marque (Jacobsen, 2018).

“Les dimensions de la valeur de la marque sont affectées lorsque les consommateurs passent en revue diverses évaluations en ligne sur les marques (qu’ils perçoivent comme crédibles) et essaient de les évaluer pour porter un jugement sur la marque (Buil et al., 2013 ; Rios et Riquelme, 2010).”

Conclusion : Cette étude conclut en affirmant que la notoriété de la marque et la valeur perçue, ont un effet de médiation partiel significatif entre les avis en ligne crédibles de la source et l’intention d’achat.
La personnalité de la marque, l’association organisationnelle et la qualité perçue, n’ont eu aucun effet de médiation entre les avis en ligne crédibles et l’intention d’achat.
Dans cette étude les consommateurs indiens utilisent les avis en ligne pour connaître la marque et son rapport coût-efficacité, ce qui influence leur intention d’achat. Les consommateurs indiens préfèrent une recommandation sur le caractère unique de la marque de la part d’une personne qu’ils connaissent personnellement plutôt qu’une recommandation en ligne émanant d’un étranger.

Sources :

Aaker, D.A. (1991), Managing Brand Equity, Free Press, New York, NY.

Aaker, D.A. (1996), “Measuring brand equity across products and markets”, California Management Review, Vol. 38 No. 3, pp. 102-120.

Ahmad, A. and Thyagaraj, K.S. (2017), “An empirical comparison of two brand personality scales: evidence from India”, Journal of Retailing and Consumer Services, Vol. 36, pp. 86-92.

Barreda, A.A., Bilgihan, A., Nusair, K. and Okumus, F. (2015), “Generating brand awareness in online social networks”, Computers in Human Behavior, Vol. 50, pp. 600-609.

Baxter, S., Ilicic, J. and Kulczynski, A. (2015), “What’s in a name? Examining the effect of phonetic fit between spokesperson name and product attributes on source credibility”, Marketing Letters, Vol. 26 No. 4, pp. 525-534.

Beneke, J., de Sousa, S., Mbuyu, M. and Wickham, B. (2016), “The effect of negative online customer reviews on brand equity and purchase intention of consumer electronics in South Africa”, The International Review of Retail, Distribution and Consumer Research, Vol. 26 No. 2, pp. 171-201.

Bruhn, M., Schoenmueller, V. and Schäfer, D.B. (2012), “Are social media replacing traditional media in terms of brand equity creation?”, Management Research Review, Vol. 35 No. 9, pp. 770-790.

Buil, I., de Chernatony, L. and Martínez, E. (2008), “A cross-national validation of the consumer-based brand equity scale”, Journal of Product and Brand Management, Vol. 17 No. 6, pp. 384-392.

Buil, I., Martínez, E. and de Chernatony, L. (2013), “The influence of brand equity on consumer responses”, Journal of Consumer Marketing, Vol. 30 No. 1, pp. 62-74.

Callegaro, M., Manfreda, K.L. and Vehovar, V. (2015), Web Survey Methodology, Sage, London.

Chan, Y.Y. and Ngai, E.W. (2011), “Conceptualising electronic word of mouth activity: an input-process-output perspective”, Marketing Intelligence and Planning, Vol. 29 No. 5, pp. 488-516.

Chang, H.H. and Liu, Y.M. (2009), “The impact of brand equity on brand preference and purchase intentions in the service industries”, The Service Industries Journal, Vol. 29 No. 12, pp. 1687-1706.

Chang, H.H., Tsai, Y.C., Wong, K.H., Wang, J.W. and Cho, F.J. (2015), “The effects of response strategies and severity of failure on consumer attribution with regard to negative word-of-mouth”, Decision Support Systems, Vol. 71, pp. 48-61.

Cheung, C.M. and Thadani, D.R. (2012), “The impact of electronic word-of-mouth communication: a literature analysis and integrative model”, Decision Support Systems, Vol. 54 No. 1, pp. 461-470.

Cheung, M.Y., Luo, C., Sia, C.L. and Chen, H. (2009), “Credibility of electronic word-of-mouth: informational and normative determinants of on-line consumer recommendations”, International Journal of Electronic Commerce, Vol. 13 No. 4, pp. 9-38.

Danner, D., Hagemann, D. and Fiedler, K. (2015), “Mediation analysis with structural equation models: combining theory, design, and statistics”, European Journal of Social Psychology, Vol. 45 No. 4, pp. 460-481.

de Oliveira, M.O.R., Silveira, C.S. and Luce, F.B. (2015), “Brand equity estimation model”, Journal of Business Research, Vol. 68 No. 12, pp. 2560-2568.

Djafarova, E. and Rushworth, C. (2017), “Exploring the credibility of online celebrities’ Instagram profiles in influencing the purchase decisions of young female users”, Computers in Human Behavior, Vol. 68, pp. 1-7.

Dwivedi, A., Nayeem, T. and Murshed, F. (2018), “Brand experience and consumers’ willingness-to-pay (WTP) a price premium: mediating role of brand credibility and perceived uniqueness”, Journal of Retailing and Consumer Services, Vol. 44, pp. 100-107.

E&Y (2015), “Social media marketing – India trends study”, available at: www.ey.com/Publication/vwLUAssets/EY-social-media-marketing-india-trends-study-2014/$FILE/EY-social-media-marketing-india-trends-study-2014.pdf (accessed 15 January 2016).

Erkan, I. and Evans, C. (2016), “The influence of eWOM in social media on consumers’ purchase intentions: an extended approach to information adoption”, Computers in Human Behavior, Vol. 61, pp. 47-55.

Fang, B., Ye, Q., Kucukusta, D. and Law, R. (2016), “Analysis of the perceived value of online tourism reviews: influence of readability and reviewer characteristics”, Tourism Management, Vol. 52, pp. 498-506.

Freeman, K.S. and Spyridakis, J.H. (2004), “An examination of factors that affect the credibility of online health information”, Technical Communication, Vol. 51 No. 2, pp. 239-263.

Goldsmith, R.E. and Flynn, L.R. (2004), “Psychological and behavioral drivers of online clothing purchase”, Journal of Fashion Marketing and Management: An International Journal, Vol. 8 No. 1, pp. 84-95.

Gunther, A.C. (1992), “Biased press or biased public? Attitudes toward media coverage of social groups”, Public Opinion Quarterly, Vol. 56 No. 2, pp. 147-167.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010), Multivariate Data Analysis, Prentice Hall, Upper Saddle River, NJ.

Hayes, R.A. and Carr, C.T. (2015), “Does being social matter? Effects of enabled commenting on credibility and brand attitude in social media”, Journal of Promotion Management, Vol. 21 No. 3, pp. 371-390.

Hazée, S., Van Vaerenbergh, Y. and Armirotto, V. (2017), “Co-creating service recovery after service failure: the role of brand equity”, Journal of Business Research, Vol. 74, pp. 101-109.

Heider, F. (1958), The Psychology of Interpersonal Relations, John Wiley and Sons, New York, NY.

Hlee, S., Lee, J., Yang, S.B. and Koo, C. (2018), “The moderating effect of restaurant type on hedonic versus utilitarian review evaluations”, International Journal of Hospitality Management, Vol. 77, pp. 195-206.

Homburg, C., Klarmann, M. and Schmitt, J. (2010), “Brand awareness in business markets: when is it related to firm performance?”, International Journal of Research in Marketing, Vol. 27 No. 3, pp. 201-212.

Hovland, C.I. and Weiss, W. (1951), “The influence of source credibility on communication effectiveness”, Public Opinion Quarterly, Vol. 15 No. 4, pp. 635-650.

Hsu, C.L., Chen, M.C., Kikuchi, K. and Machida, I. (2017), “Elucidating the determinants of purchase intention toward social shopping sites: a comparative study of Taiwan and Japan”, Telematics and Informatics, Vol. 34 No. 4, pp. 326-338.

Huang, R. and Sarigöllü, E. (2012), “How Brand awareness relates to market outcome, brand equity, and the marketing mix”, Journal of Business Research, Vol. 65 No. 1, pp. 92-99.

IBEF (2018), “E-commerce sector in India”, available at: www.ibef.org/industry/ecommerce.aspx (accessed 11 October 2018).

Jacobsen, S. (2018), “Why did I buy this? The effect of WOM and online reviews on post purchase attribution for product outcomes”, Journal of Research in Interactive Marketing, Vol. 12 No. 3, pp. 370-395.

Jeng, S.P. (2017), “Increasing customer purchase intention through product return policies: the pivotal impacts of retailer brand familiarity and product categories”, Journal of Retailing and Consumer Services, Vol. 39, pp. 182-189.

Kamalul Ariffin, S., Mohan, T. and Goh, Y.N. (2018), “Influence of consumers’ perceived risk on consumers’ online purchase intention”, Journal of Research in Interactive Marketing, Vol. 12 No. 3, pp. 309-327.

Kang, M., Shin, D.H. and Gong, T. (2016), “The role of personalization, engagement, and trust in online communities”, Information Technology and People, Vol. 29 No. 3, pp. 580-596.

Keller, K.L. (1993), “Conceptualizing, measuring, and managing customer-based brand equity”, The Journal of Marketing, Vol. 57 No. 1, pp. 1-22.

Keller, K.L., Parameswaran, M.G. and Jacob, I. (2011), Strategic Brand Management: Building, Measuring, and Managing Brand Equity, Pearson Education, Bengaluru.

Kim, H., Suh, K.S. and Lee, U.K. (2013), “Effects of collaborative online shopping on shopping experience through social and relational perspectives”, Information and Management, Vol. 50 No. 4, pp. 169-180.

Kim, S.S., Choe, J.Y.J. and Petrick, J.F. (2018), “The effect of celebrity on brand awareness, perceived quality, brand image, brand loyalty, and destination attachment to a literary festival”, Journal of Destination Marketing and Management, Vol. 9, pp. 320-329.

Kluge, P.N. and Fassnacht, M. (2015), “Selling luxury goods online: effects of online accessibility and price display”, International Journal of Retail and Distribution Management, Vol. 43 Nos 10/11, pp. 1065-1082.

KPMG (2017), “The truth about online consumers: 2017 global online consumer report”, available at: https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2017/01/the-truth-about-online-consumers.pdf (accessed 12 august 2017).

Lassar, W., Mittal, B. and Sharma, A. (1995), “Measuring customer-based brand equity”, Journal of Consumer Marketing, Vol. 12 No. 4, pp. 11-19.

Lee, W.I., Cheng, S.Y. and Shih, Y.T. (2017), “Effects among product attributes, involvement, word-of-mouth, and purchase intention in online shopping”, Asia Pacific Management Review, Vol. 22 No. 4, pp. 1-7.

Liu, X., Hu, J. and Xu, B. (2017b), “Does eWOM matter to brand extension? An examination of the impact of online reviews on brand extension evaluations”, Journal of Research in Interactive Marketing, Vol. 11 No. 3, pp. 232-245.

Liu, M.T., Wong, I.A., Tseng, T.H., Chang, A.W.Y. and Phau, I. (2017a), “Applying consumer-based brand equity in luxury hotel branding”, Journal of Business Research, Vol. 81, pp. 192-202.

MacCallum, R.C., Widaman, K.F., Zhang, S. and Hong, S. (1999), “Sample size in factor analysis”, Psychological Methods, Vol. 4 No. 1, pp. 84-99.

MacKinnon, D.P., Fairchild, A.J. and Fritz, M.S. (2007), “Mediation analysis”, Annual Review of Psychology, Vol. 58, pp. 593-614.

Malhotra, N.K. and Dash, S. (2011), Marketing Research: An Applied Orientation, Pearson Education, New Delhi.

Martínez-López, F.J., Anaya-Sánchez, R., Molinillo, S., Aguilar-Illescas, R. and Esteban-Millat, I. (2017), “Consumer engagement in an online brand community”, Electronic Commerce Research and Applications, Vol. 23, pp. 24-37.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Mullen, B. and Johnson, C. (2013), The Psychology of Consumer Behavior, Psychology Press, London.

Mumuni, A.G., Lancendorfer, K.M., O’Reilly, K.A. and MacMillan, A. (2018), “Antecedents of consumers’ reliance on online product reviews”, Journal of Research in Interactive Marketing, Vol. 13 No. 1, pp. 26-46, available at: https://doi.org/10.1108/JRIM-11-2017-0096

Neirotti, P., Raguseo, E. and Paolucci, E. (2016), “Are customers’ reviews creating value in the hospitality industry? Exploring the moderating effects of market positioning”, International Journal of Information Management, Vol. 36 No. 6, pp. 1133-1143.

Nunnally, J. (1978), Psychometric Theory, McGraw Hill, New York, NY.

O’Neil, J. and Eisenmann, M. (2017), “An examination of how source classification impacts credibility and consumer behavior”, Public Relations Review, Vol. 43 No. 2, pp. 278-292.

Pappu, R., Quester, P.G. and Cooksey, R.W. (2005), “Consumer-based brand equity: improving the measurement-empirical evidence”, Journal of Product and Brand Management, Vol. 14 No. 3, pp. 143-154.

Park, D.H. and Kim, S. (2008), “The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews”, Electronic Commerce Research and Applications, Vol. 7 No. 4, pp. 399-410.

Park, J.H. and Kim, M.K. (2016), “Factors influencing the low usage of smart TV services by the terminal buyers in Korea”, Telematics and Informatics, Vol. 33 No. 4, pp. 1130-1140.

Phua, J., Jin, S.V. and Kim, J.J. (2017), “Gratifications of using Facebook, Twitter, Instagram, or Snapchat to follow brands: the moderating effect of social comparison, trust, tie strength, and network homophily on brand identification, brand engagement, brand commitment, and membership intention”, Telematics and Informatics, Vol. 34 No. 1, pp. 412-424.

Rana, A., Bhat, A. and Rani, L. (2015), “A classificatory scheme for antecedents of the sources of ‘online brand equity”, Journal of Research in Interactive Marketing, Vol. 9 No. 4, pp. 262-298.

Ranfagni, S., Camiciottoli, B.C. and Faraoni, M. (2016), “How to measure alignment in perceptions of brand personality within online communities: interdisciplinary insights”, Journal of Interactive Marketing, Vol. 35, pp. 70-85.

Rios, R.E. and Riquelme, H.E. (2010), “Sources of brand equity for online companies”, Journal of Research in Interactive Marketing, Vol. 4 No. 3, pp. 214-240.

Shan, Y. (2016), “How credible are online product reviews? The effects of self-generated and system-generated cues on source credibility evaluation”, Computers in Human Behavior, Vol. 55, pp. 633-641.

Shareef, M.A., Mukerji, B., Dwivedi, Y.K., Rana, N.P. and Islam, R. (2019), “Social media marketing: comparative effect of advertisement sources”, Journal of Retailing and Consumer Services, Vol. 46, pp. 58-69.

Shi, X. and Liao, Z. (2017), “Online consumer review and group-buying participation: the mediating effects of consumer beliefs”, Telematics and Informatics, Vol. 34 No. 5, pp. 605-617.

Shin, D. (2015), “Beyond user experience of cloud service: implication for value sensitive approach”, Telematics and Informatics, Vol. 32 No. 1, pp. 33-44.

Sposito, V.A., Hand, M.L. and Skarpness, B. (1983), “On the efficiency of using the sample kurtosis in selecting optimal lpestimators”, Communications in Statistics-Simulation and Computation, Vol. 12 No. 3, pp. 265-272.

Statista (2018), “Leading countries based on number of Facebook users as of July 2018”, available at: www.statista.com/statistics/268136/top-15-countries-based-on-number-offacebook-users/ (accessed 11 October 2018).

Tamimi, N. and Sebastianelli, R. (2016), “How e-tailing attributes affect perceived quality: the potential impact of customer demographics and online behaviors”, The TQM Journal, Vol. 28 No. 4, pp. 547-560.

TechinAsia (2017), “Facebook has a big women problem in India”, available at: www.techinasia.com/facebook-india-women-problem (accessed 11 October 2018).

Todd, P.R. and Melancon, J. (2018), “Gender and live-streaming: source credibility and motivation”, Journal of Research in Interactive Marketing, Vol. 12 No. 1, pp. 79-93.

Visentin, M., Pizzi, G. and Pichierri, M. (2019), “Fake news, real problems for brands: the impact of content truthfulness and source credibility on consumers’ behavioral intentions toward the advertised brands”, Journal of Interactive Marketing, Vol. 45, pp. 99-112.

we are social (2018), “Digital in 2018: World’s internet users pass the 4 billion mark”, available at: https://wearesocial.com/blog/2018/01/global-digital-report-2018 (accessed 10 October 2018).

Wood, L. (2000), “Brands and brand equity: definition and management”, Management Decision, Vol. 38 No. 9, pp. 662-669.

Wu, J.H., Wu, C.W., Lee, C.T. and Lee, H.J. (2015), “Green purchase intentions: an exploratory study of the Taiwanese electric motorcycle market”, Journal of Business Research, Vol. 68 No. 4, pp. 829-833.

Wu, P.C. and Wang, Y.C. (2011), “The influences of electronic word-of-mouth message appeal and message source credibility on brand attitude”, Asia Pacific Journal of Marketing and Logistics, Vol. 23 No. 4, pp. 448-472.

Wu, P.C., Yeh, G.Y.Y. and Hsiao, C.R. (2011), “The effect of store image and service quality on brand image and purchase intention for private label brands”, Australasian Marketing Journal (AMJ), Vol. 19 No. 1, pp. 30-39.

Wu, T.Y. and Lin, C.A. (2017), “Predicting the effects of eWOM and online brand messaging: source trust, bandwagon effect and innovation adoption factors”, Telematics and Informatics, Vol. 34 No. 2, pp. 470-480.

Yoo, B., Donthu, N. and Lee, S. (2000), “An examination of selected marketing mix elements and brand equity”, Journal of the Academy of Marketing Science, Vol. 28 No. 2, pp. 195-211.

Zaichkowsky, J.L. (1985), “Measuring the involvement construct”, Journal of Consumer Research, Vol. 12 No. 3, pp. 341-352.

Zeithaml, V.A. (1988), “Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence”, The Journal of Marketing, Vol. 52 No. 3, pp. 2-22.

Usefulness, funniness, and coolness votes of viewers: An analysis of social shoppers’ online reviews

Lee I, (2018), Usefulness, funniness, and coolness votes of viewers: An analysis of social shoppers’ online reviews, Industrial Management & Data Systems, Vol. 118, pp. 700-713.

Mots-clefs : acheteurs sociaux, social shopping, avis en ligne, évaluation, notes d’évaluation, contenu de l’évaluation, profils des acheteurs sociaux.

Résumé : Cet article a pour but d’évaluer les relations entre cinq caractéristiques des évaluations en ligne des acheteurs sociaux : le nombre d’évaluations faites par un évaluateur, le nombre d’amis d’un évaluateur, la note d’évaluation, le nombre de mots d’évaluation et les images/photos.
Les avis en ligne sont perçus comme plus utiles que les communications des marques et entreprises, étant plus impartiales et donc non portée par un objectif commercial.

Le social shopping est le fait de vendre ses produits via des plateformes en ligne spécialisée dans la vente avec remise élevée (ex : Groupon). Cette expérience d’achat est généralement immédiate et représente souvent une première expérience. De ce fait les avis d’autres consommateurs deviennent un critère d’évaluation essentiel.

Les sites d’évaluation en ligne aident les acheteurs sociaux à prendre des décisions éclairées sur les produits/services. Les acheteurs sociaux sont différents des acheteurs traditionnels, ils sont décisifs, ils connaissent les technologies et sont bien informés. Les clients de groupes sont beaucoup plus critiques que les clients réguliers, avec des commentaires plus sévères, et beaucoup sont des clients de passage sensibles au prix.

“Les évaluations en ligne permettent aux consommateurs de partager leur expérience directe avec d’autres consommateurs qui s’attendent à ce que l’évaluation soit crédible et utile pour leur expérience future (Casalo et al., 2010).”

Conclusion : Cette étude montre que la perception de l’utilité, de l’humour et de la sérénité des spectateurs peut dépendre de la combinaison des notes d’évaluation, du contenu de l’évaluation et des profils des acheteurs sociaux.
L’article prouve que le nombre de mot est important pour les récepteurs de l’avis.
Un évaluateur qui a plus d’amis dans son réseau social et qui écrit des commentaires plus longs a tendance à avoir plus d’influence sur la valeur perçue de l’évaluation. Il est ainsi plus crédible aux yeux des récepteurs de l’avis.

Sources :

Allsop, D.T., Bassett, B.R. and Hoskins, J.A. (2007), “Word of mouth research: principles and applications”, Journal of Advertising Research, Vol. 47 No. 4, pp. 398-411.

Amblee, N. and Bui, T. (2011-2012), “Harnessing the influence of social proof in online shopping: the effect of electronic word of mouth on sales of digital microproducts”, International Journal of Electronic Commerce, Vol. 16 No. 2, pp. 91-113.

Aral, S. (2014), “The problem with online ratings”, Sloan Management Review, Vol. 55 No. 2, pp. 47-52.

Baek, H., Ahn, J.H. and Choi, Y. (2012-2013), “Helpfulness of online reviews: readers’ objectives and review cues”, International Journal of Electronic Commerce, Vol. 17 No. 2, pp. 99-126.

Bansal, H.S. and Voyer, P.A. (2000), “Word-of-mouth processes within a services purchase decision context”, Journal of Service Research, Vol. 3 No. 2, pp. 166-177.

Brown, J.J. and Reingen, P.H. (1987), “Social ties and word-of-mouth referral behavior”, Journal of Consumer Research, Vol. 14 No. 3, pp. 350-362.

Brown, T.J., Barry, T.E. and Dacin, P.A. (2005), “Spreading the word: investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context”, Journal of the Academy of Marketing Science, Vol. 33 No. 2, pp. 123-138.

Cantallops, A.S., Salvi, F. and Cardona, J.R. (2016), “Impacts of eWOM on hotels from the consumer and company perspective”, in Lee, I. (Ed.), Encyclopedia of E-Commerce Development, Implementation, and Management, IGI Global, Hershey, PA, pp. 2017-2029.

Casalo, L.V., Flavian, C. and Guinaliu, M. (2010), “Determinants of the intention to participate in firm-hosted online travel communities and effects on consumer behavioral intentions”, Tourism Management, Vol. 31 No. 6, pp. 898-911.

Cha, M., Haddadi, H., Benevenuto, F. and Gummadi, K.P. (2010), “Measuring user influence in twitter: the million follower fallacy”, Proceedings of 4th International AAAI Conference on Weblogs and Social Media, pp. 10-17.

Charney, T.R. and Greenberg, B.S. (2002), “Uses and gratifications of the internet”, in Lin, C. and Atkin, D. (Eds), Communication, Technology and Society: New Media Adoption and Uses, Hampton Press, Cresskill, NJ, pp. 379-407.

Chen, H., Chiang, R.H. and Storey, V.C. (2012), “Business intelligence and analytics: from big data to big impact”, MIS Quarterly, Vol. 36 No. 4, pp. 1165-1188.

Cheung, M.Y., Luo, C., Sia, C.L. and Chen, H. (2009), “Credibility of electronic word-of-mouth: information and normative determinants of online consumer recommendations”, International Journal of Electronic Commerce, Vol. 13 No. 4, pp. 9-38.

Cheung, Y. and Ho, H. (2015), “Social influence’s impact on reader perceptions of online reviews”, Journal of Business Research, Vol. 68 No. 4, pp. 883-887.

Chevalier, J.A. and Mayzlin, D. (2006), “The effect of electronic word of mouth on sales: online book reviews”, Journal of Marketing Research, Vol. 43 No. 3, pp. 345-354.

Chiu, H.-C., Hsieh, Y.-C., Kao, Y.-H. and Lee, M. (2007), “The determinants of email receivers’ disseminating behaviors on the internet”, Journal of Advertising Research, Vol. 47 No. 4, pp. 524-534.

Cruz, D. and Fill, C. (2008), “Evaluating viral marketing: isolating the key criteria”, Marketing Intelligence & Planning, Vol. 26 No. 7, pp. 743-758.

Datta, P.R., Chowdhury, D.N. and Chakraborty, B.R. (2005), “Viral marketing: new form of word-of-mouth through internet”, The Business Review, Vol. 3 No. 2, pp. 69-75.

De Bruyn, A. and Lilien, G. (2008), “A multi-stage model of word-of-mouth influence through viral marketing”, International Journal of Research in Marketing, Vol. 25 No. 3, pp. 151-163.

Derbaix, C. and Vanhamme, J. (2003), “Inducing word-of-mouth by eliciting surprise – a pilot investigation”, Journal of Economic Psychology, Vol. 24 No. 1, pp. 99-116.

Granovetter, M.S. (1973), “The strength of weak ties”, American Journal of Sociology, Vol. 78 No. 6, pp. 1360-1380.

Hennig-Thurau, T. and Walsh, G. (2003-2004), “Electronic word of mouth: motives for and consequences of reading customer articulations on the internet”, International Journal of Electronic Commerce, Vol. 8 No. 2, pp. 51-74.

Hennig-Thurau, T., Gwinner, K.P., Walsh, G. and Gremler, D.D. (2004), “Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet?”, Journal of Interactive Marketing, Vol. 18 No. 1, pp. 38-52.

Hsu, L.C., Chih, W.H. and Liou, D.K. (2016), “Investigating community members’ eWOM effects in Facebook fan page”, Industrial Management & Data Systems, Vol. 116 No. 5, pp. 978-1004.

Katona, Z., Zubcsek, P.P. and Sarvary, M. (2011), “Network effects and personal influences: the diffusion of an online social network”, Journal of Marketing Research, Vol. 48 No. 3, pp. 425-443.

Kim, H.D., Lee, I. and Lee, C.K. (2013), “Building Web 2.0 enterprises: a study of small and medium enterprises in the United States”, International Small Business Journal, Vol. 31 No. 2, pp. 156-174.

Kim, Y. and Na, J. (2007), “Effects of celebrity athlete endorsement on attitude towards the product: the role of credibility, attractiveness and the concept of congruence”, International Journal of Sports Marketing and Sponsorship, Vol. 8 No. 4, pp. 23-33.

Kozinets, R.V., Valck, K., Wojnicki, A.C. and Wilner, S.J.S. (2010), “Networked narratives: understanding word-of-mouth marketing in online communities”, Journal of Marketing, Vol. 74 No. 2, pp. 71-89.

Lafferty, B.A. and Goldsmith, R.E. (1999), “Corporate credibility’s role in consumers’ attitudes and purchase intentions when a high versus low credibility endorser is used in the ad”, Journal of Business Research, Vol. 44 No. 2, pp. 109-116.

Lee, I. (2016), “Using Groupon for health and wellness businesses”, Business Horizons, Vol. 59 No. 4, pp. 369-377.

Lee, I. (2017), “A study of the effect of social shopping deals on online reviews”, Industrial Management and Data Systems, Vol. 117 No.10, pp. 2227-2240.

Lee, I. and Lee, K. (2012), “Social shopping promotions from a social merchant’s perspective”, Business Horizons, Vol. 55 No. 5, pp. 441-451.

Lee, J., Park, D.-H. and Han, I. (2008), “The effect of negative online consumer reviews on product attitude: an information processing view”, Electronic Commerce Research and Applications, Vol. 7 No. 3, pp. 341-352.

Lee, S.G., Trimi, S. and Yang, C.G. (2017), “Perceived usefulness factors of online reviews: a study of Amazon.com”, Journal of Computer Information Systems, March 7, available at: http://dx.doi.org/10.1080/08874417.2016.1275954

Li, M., Huang, L., Tan, C. and Wei, K. (2013), “Helpfulness of online product reviews as seen by consumers: source and content features”, International Journal of Electronic Commerce, Vol. 17 No. 4, pp. 101-136.

Liu, Z. and Park, S. (2015), “What makes a useful online review? Implication for travel product websites”, Tourism Management, Vol. 47, pp. 140-151.

Long, J.S. (1997), Regression Models for Categorical and Limited Dependent Variables, Sage Publications, Thousand Oaks, CA.

Loureiro, S.M.C. and Kastenholz, E. (2011), “Corporate reputation, satisfaction, delight, and loyalty towards rural lodging units in Portugal”, International Journal of Hospitality Management, Vol. 30 No. 3, pp. 575-583.

Moe, W.W. and Trusov, M. (2011), “The value of social dynamics in online product ratings forums”, Journal of Marketing Research, Vol. 48 No. 3, pp. 444-456.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Ohanian, R. (1990), “Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness”, Journal of Advertising, Vol. 19 No. 3, pp. 39-52.

Papathanassis, A. and Knolle, F. (2011), “Exploring the adoption and processing of online holiday reviews: a grounded theory approach”, Tourism Management, Vol. 32 No. 2, pp. 215-224.

Park, S. and Nicolau, J.L. (2015), “Asymmetric effects of online consumer reviews”, Annals of Tourism Research, Vol. 50, pp. 67-83.

Pavlou, P. and Gefen, D. (2004), “Building effective online marketplaces with institution-based trust”, Information Systems Research, Vol. 15 No. 1, pp. 37-59.

Pentina, I., Bailey, A.A. and Zhang, L. (2018), “Exploring effects of source similarity, message valence, and receiver regulatory focus on Yelp review persuasiveness and purchase intentions”, Journal of Marketing Communications, Vol. 24 No. 2, pp. 125-145, available at: http://dx.doi.org/10.1080/13527266.2015.1005115

Reichelt, J., Sievert, J. and Jacob, F. (2014), “How credibility affects eWOM reading: the influences of expertise, trustworthiness, and similarity on utilitarian and social functions”, Journal of Marketing Communications, Vol. 20 Nos 1-2, pp. 65-81.

Shih, H.P., Lai, K.H. and Cheng, T.C.E. (2013), “Informational and relational influences on electronic word-of-mouth: an empirical study of an online consumer discussion forum”, International Journal of Electronic Commerce, Vol. 17 No. 4, pp. 137-166.

Wei, W., Miao, L. and Huang, Z.J. (2013), “Customer engagement behaviors and hotel responses”, International Journal of Hospitality Management, Vol. 33, pp. 316-330.

Willemsen, L.M., Neijens, P.C., Bronner, F. and de Ridder, J.A. (2011), “‘Highly recommended!’ The content characteristics and perceived usefulness of online consumer reviews”, Journal of Computer-Mediated Communication, Vol. 17 No. 1, pp. 19-38.

Yacouel, N. and Fleischer, A. (2011), “The role of cybermediaries in reputation building and price premiums in the online hotel market”, Journal of Travel Research, Vol. 50 No. 1, pp. 1-8.

Yang, S.-B., Hlee, S., Lee, J. and Koo, C. (2017), “An empirical examination of online restaurant reviews on Yelp.com: a dual coding theory perspective”, International Journal of Contemporary Hospitality Management, Vol. 29 No. 2, pp. 817-839.

Roles of negative emotions in customers’ perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach

Lee M, Jeong M, Lee J, (2017), Roles of negative emotions in customers’ perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach, International Journal of Contemporary Hospitality Management, Vol.29.

Mots-clefs : avis en ligne, émotions, émotions négatives, crédibilité, intensité négative, utilité, prise de décision des consommateurs.

Résumé : Cet article a pour but de définir l’utilité des émotions négatives dans les avis en ligne et leur impact. L’étude se base ainsi sur des données empiriques et une méthodologie exploratoire dans le contexte de l’hôtellerie. Avec le web 2.0 les avis et commentaires en ligne sont devenus une source majeure d’évaluation aiguillant le consommateur. Nous apprenons dans cet écrit que selon une enquête eMarketer de 2014 que 79% des consommateurs lisent les avis avant un achat et que ceux-ci influencent leur décision.

Selon l’article et des études antérieures, les avis sont influencés par de nombreuses caractéristiques : les informations descriptives de l’identité, le sexe et l’expertise (Forman et al., 2008 ; Lee et al., 2011), le style et la qualité des avis (Jensen et al., 2013 ; Li et al., 2013) et les notes des avis (Mudambi et Schuff, 2010).

Les avis négatifs sont reconnus comme plus influents que les avis positifs : 80% des consommateurs ont changé d’avis sur un produit suite à des avis négatifs (eMarketer 2011).

Cependant les auteurs définissent que l’anonymat des avis en ligne permet d’exprimer plus facilement ses émotions, notamment négatives. L’étude démontrera que les avis négatifs se sont montrés plus utiles que les avis positifs. “Ils estiment que les avis négatifs, par rapport aux avis positifs, sont plus perspicaces, plus diagnostiques et plus utiles pour prendre des décisions éclairées et meilleures”. L’article démontre également que plus l’émotion négative est importante et exprimée, moins l’avis est considéré comme utile. Il ya donc un degrés d’importance de l’émotion, le contenu et sa crédibilité sont analysés par le consommateur.

Cependant une étude de Ammon (2015) indique que les mauvais commentaires donnent plus de crédibilité aux bons commentaires avec une apparence plus honnête et offrent directement de la crédibilité, dans ce cas, aux hôtels.

Conclusion : Cette étude a prouvé que les évaluations négatives avaient leur importance tout comme le niveau et/ou degrés d’émotion exprimé dans un commentaire. Les consommateurs accordent plus d’importance et de crédibilité aux avis négatifs et trouvent même étrange si il n’y a que des effets positifs. “Selon Ammon (2015), des études réalisées par Reevoo, un site d’évaluation des clients, indiquent que 95 % des consommateurs sont méfiants à l’égard des évaluations sur les sites d’évaluation générés par les utilisateurs lorsqu’il n’y a pas de mauvais résultats”.
Cependant l’étude définie également qu’un avis trop négatif perd de la valeur, plus il y a d’expressions émotionnelles moins le commentaire est considéré crédible. L’intensité négative des expressions émotionnelles est un élément essentiel du jugement et de la crédibilité des avis en ligne et produits eux mêmes.

Sources :

Ammon, T. (2015), “Why negative reviews are still a big ecommerce win

Aral, S., Dellarocas, C. and Godes, D. (2013), “Social media and business transformation: a framework for research”, Information Systems Research, Vol. 24 No. 1, pp. 3-13.

Baccianella, S., Esuli, A. and Sebastiani, F. (2010), “SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining”, LREC, pp. 2200-2204.

Bagozzi, R.P., Gopinath, M. and Nyer, P.U. (1999), “The role of emotions in marketing”, Journal of the Academy of Marketing Science, Vol. 27 No. 2, pp. 184-206.

Berezina, K., Bilgihan, A., Cobanoglu, C. and Okumus, F. (2015), “Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews”, Journal of Hospitality Marketing & Management, Vol. 24. No. 1, pp. 1-24.

Bickart, B. and Schindler, R.M. (2001), “Internet forums as influential sources of consumer information”, Journal of Interactive Marketing, Vol. 15 No. 3, pp. 31-40.

Browning, V., So, K. and Sparks, B. (2013), “The influence of online reviews on consumers’ attributions of service quality and control for service standards in hotels”, Journal of Travel & Tourism Marketing, Vol. 30 No. 1-2, pp. 23-40.

Cameron, A.C. and Trivedi, P.K. (2010), Microeconometrics using Stata, Stata Press, College Station, TX.

Cao, Q., Duan, W. and Gan, Q. (2011), “Exploring determinants of voting for the ‘helpfulness’ of online user reviews: a text mining approach”, Decision Support Systems, Vol. 50 No. 2, pp. 511-521.

Chatterjee, P. (2001), “Online reviews: do consumers use them?”, Advances in Consumer Research, Vol. 28, pp. 129-133.

Chevalier, J.A. and Mayzlin, D. (2006), “The effect of word of mouth on sales: online book reviews”, Journal of Marketing Research, Vol. 43 No. 3, pp. 345-354.

Connors, L., Mudambi, S.M. and Schuff, D. (2011), “Is it the review or the reviewer? A multi-method approach to determine the antecedents of online review helpfulness”, 44th Hawaii International Conference on System Sciences, pp. 1-10.

De Albornoz, J.C., Plaza, L. and Gervas, P. (2012), “Sentisense: an easily scalable concept based affective lexicon for sentiment analysis”, Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), pp. 3562-3567.

Dellarocas, C. (2003), “The digitization of word of mouth: promise and challenges of online feedback mechanisms”, Management Science, Vol. 49 No. 10, pp. 1407-1424.

Derks, D., Fischer, A.H. and Bos, A.E.R. (2008), “The role of emotion in computer-mediated communication: a review”, Computers in Human Behavior, Vol. 24 No. 3, pp. 766-785.

Diefendorff, J.M. and Richard, E.M. (2003), “Antecedents and consequences of emotional display rule perceptions”, Journal of Applied Psychology, Vol. 88 No. 2, pp. 284-294.

Duan, W., Gu, B. and Whinston, A.B. (2008), “Do online reviews matter? An empirical investigation of panel data”, Decision Support Systems, Vol. 45 No. 4, pp. 1007-1016.

Ekman, P. (1973), Darwin and Facial Expression: A Century of Research in Review, Malor Books.

eMarketer (2011), “Negative buzz gains traction among Web users”, 

eMarketer (2014), “Online reviewers lean toward good, mixed feedback over negative”,

Esuli, A. and Sebastiani, F. (2006), “Sentiwordnet: a publicly available lexical resource for opinion mining”, Proceedings of LREC, CiteSeer, pp. 417-422.

Fang, B., Ye, Q., Kucukusta, D. and Law, R. (2016), “Analysis of the perceived value of online tourism reviews: influence of readability and reviewer characteristics”, Tourism Management, Vol. 52, pp. 498-506.

Fiske, S.T. (1980), “Attention and weight in person perception: the impact of negative and extreme behavior”, Journal of Personality and Social Psychology, Vol. 38 No. 6, pp. 889-906.

Folkes, V.S. (1988), “Recent attribution research in consumer behavior: a review and new directions”, Journal of Consumer Research, Vol. 14 No. 4, pp. 548-565.

Forman, C., Ghose, A. and Wiesenfeld, B. (2008), “Examining the relationship between reviews and sales: the role of reviewer identity disclosure in electronic markets”, Information Systems Research, Vol. 19 No. 3, pp. 291-313.

Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010), Multivariate Data Analysis: A Global Perspective, 7th ed., Pearson Prentice Hall, Upper Saddle River, NJ.

Hamilton, R., Vohs, K.D. and McGill, A.L. (2014), “We’ll be honest, this won’t be the best article you’ll ever read: the use of dispreferred markers in word-of-mouth communication”, Journal of Consumer Research, Vol. 41 No. 1, pp. 197-212.

Hernández-Méndez, J., Muñoz-Leiva, F. and Sánchez-Fernández, J. (2015), “The influence of e-word-of-mouth on travel decision-making: consumer profiles”, Current Issues in Tourism, Vol. 18 No. 11, pp. 1001-1021.

Howard, D.J. and Gengler, C. (2001), “Emotional contagion effects on product attitudes”, Journal of Consumer Research, Vol. 28 No. 2, pp. 189-201.

Jensen, M.L., Averbeck, J.M., Zhang, Z. and Wright, K.B. (2013), “Credibility of anonymous online product reviews: a language expectancy perspective”, Journal of Management Information Systems, Vol. 30 No. 1, pp. 293-324.

Jeong, M. and Jeon, M.M. (2008), “Customer reviews of hotel experiences through consumer generated media (CGM)”, Journal of Hospitality & Leisure Marketing, Vol. 17 Nos 1/2, pp. 121-138.

Jiang, Z.H. and Benbasat, I. (2007), “Investigating the influence of the functional mechanisms of online product presentations”, Information Systems Research, Vol. 18 No. 4, pp. 454-470.

Kahneman, D. and Tversky, A. (1979), “Prospect theory: an analysis of decision under risk”, Econometrica, Vol. 47 No. 2, pp. 263-291.

Kiesler, S., Siegel, J. and McGuire, T.W. (1984), “Social psychological aspects of computer-mediated communication”, American Psychologist, Vol. 39 No. 10, pp. 1123-1134.

Kim, J. and Gupta, P. (2012), “Emotional expressions in online user reviews: how they influence consumers’ product evaluations”, Journal of Business Research, Vol. 65 No. 7, pp. 985-992.

King, R.A., Racherla, P. and Bush, V.D. (2014), “What we know and don’t know about online word-of-mouth: a review and synthesis of the literature”, Journal of Interactive Marketing, Vol. 28 No. 3, pp. 167-183.

Krishna, A., Dangayach, G. and Sharma, S. (2014), “Service recovery paradox: the success parameters”, Global Business Review, Vol. 15 No. 2, pp. 263-277.

Kusumasondjaja, S., Shanka, T. and Marchegiani, C. (2012), “Credibility of online reviews and initial trust: the roles of reviewer’s identify and review valence”, Journal of Vacation Marketing, Vol. 18 No. 3, pp. 185-195.

La, S. and Choi, B. (2012), “The role of customer affection and trust in loyalty rebuilding after service failure and recovery”, The Service Industries Journal, Vol. 32 No. 1, pp. 105-125.

Lee, H.A., Law, R. and Murphy, J. (2011), “Helpful reviewers in TripAdvisor, an online travel community”, Journal of Travel & Tourism Marketing, Vol. 28 No. 7, pp. 675-688.

Lee, J., Park, D.H. and Han, I. (2008), “The effect of negative online consumer reviews on product attitude: an information processing view”, Electronic Commerce Research and Applications, Vol. 7 No. 3, pp. 341-352.

Lerner, J.S. and Keltner, D. (2000), “Beyond valence: toward a model of emotion-specific influences on judgment and choice”, Cognition & Emotion, Vol. 14 No. 4, pp. 473-493.

Li, M., Huang, L., Tan, C.H. and Wei, K.K. (2013), “Helpfulness of online product reviews as seen by consumers: source and content features”, International Journal of Electronic Commerce, Vol. 17 No. 4, pp. 101-136.

Liu, Y. (2006), “Word of mouth for movies: its dynamics and impact on box office revenue”, Journal of Marketing, Vol. 70 No. 3, pp. 74-89.

Lu, W. and Stepchenkova, S. (2015), “User-generated content as a research mode in tourism and hospitality applications: topics, methods, and software”, Journal of Hospitality Marketing & Management, Vol. 24 No. 2, pp. 119-154.

Maheswaran, D. and Meyers-Levy, J. (1990), “The influence of message framing and issue involvement”, Journal of Marketing Research, Vol. 27 No. 3, pp. 361-367.

Mattsson, J., Lemmink, J. and McColl, R. (2004), “The effect of verbalized emotions on loyalty in written complaints”, Total Quality Management & Business Excellence, Vol. 15 No. 7, pp. 941-958.

Mauri, A.G. and Minazzi, R. (2013), “Web reviews influence on expectations and purchasing intentions of hotel potential customers”, International Journal of Hospitality Management, Vol. 34, pp. 99-107.

Melian-Gonzalez, S., Bulchand-Gidumal, J. and Gonzalez Lopez-Valcarcel, B. (2013), “Online customer reviews of hotels: as participation increases, better evaluation is obtained”, Cornell Hospitality Quarterly, Vol. 54 No. 3, pp. 274-283.

Morris, M.W. and Keltner, D. (2000), “How emotions work: the social functions of emotional expression in negotiations”, Research in Organizational Behavior, Vol. 22, pp. 1-50.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of customer reviews on Amazon.com”, MIS Quarterly, Vol. 34 No. 1, pp. 185-200.

Nicosia, F. (1966), Consumer Decision Processes, Prentice Hall, Englewood Cliffs, NJ.

Nyer, P.U. (2000), “An investigation into whether complaining can cause increased consumer satisfaction”, Journal of Consumer Marketing, Vol. 17 No. 1, pp. 9-19.

Pang, B. and Lee, L. (2008), “Opinion mining and sentiment analysis”, Foundations and Trends in Information Retrieval, Vol. 2 Nos 1/2, pp. 1-135.

Park, D.H. and Kim, S. (2008), “The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews”, Electronic Commerce Research and Applications, Vol. 7 No. 4, pp. 399-410.

Park, H., Xiang, Z., Josiam, B. and Kim, H. (2014), “Personal profile information as cues of credibility in online travel reviews”, Anatolia, Vol. 25 No. 1, pp. 13-23.

Pavlou, P. and Dimoka, A. (2006), “The nature and role of feedback text comments in online marketplaces: implications for trust building, price premiums, and seller differentiation”, Information Systems Research, Vol. 17 No. 4, pp. 392-414.

Pennebaker, J.W., Booth, R.J. and Francis, M.E. (2007), Linguistic Inquiry and Word Count (LIWC2007), Austin, TX,

Rafaeli, A. and Sutton, R.I. (1991), “Emotional contrast strategies as means of social influence: lessons from criminal interrogators and bill collectors”, Academy of Management Journal, Vol. 34 No. 4, pp. 749-775.

Rice, R.E. and Love, G. (1987), “Electronic emotion socio emotional content in a computer-mediated communication network”, Communication Research, Vol. 14 No. 1, pp. 85-108.

Rozin, P. and Royzman, E.B. (2001), “Negativity bias, negativity dominance, and contagion”, Personality and Social Psychology Review, Vol. 5 No. 4, pp. 296-320.

Schuckert, M., Liu, X. and Law, R. (2015), “Hospitality and tourism online reviews: recent trends and future directions”, Journal of Travel & Tourism Marketing, Vol. 32 No. 5, pp. 608-621.

Schwarz, N. (2000), “Emotion, cognition, and decision making”, Cognition & Emotion, Vol. 14 No. 4, pp. 433-440.

Serra Cantallops, A. and Salvi, F. (2014), “New consumer behavior: a review of research on eWOM and hotels”, International Journal of Hospitality Management, Vol. 36, pp. 41-51.

Sparks, B.A. and Browning, V. (2011), “The impact of online reviews on hotel booking intentions and perception of trust”, Tourism Management, Vol. 32 No. 6, pp. 1310-1323.

Tronvoll, B. (2011), “Negative emotions and their effect on customer complaint behaviour”, Journal of Service Management, Vol. 22 No. 1, pp. 111-134.

Tsao, W.C., Hsieh, M.T., Shih, L.W. and Lin, T.M. (2015), “Compliance with eWOM: the influence of hotel reviews on booking intention from the perspective of consumer conformity”, International Journal of Hospitality Management, Vol. 46, pp. 99-111.

Vermeulen, I.E. and Seegers, D. (2009), “Tried and tested: the impact of online hotel reviews on consumer consideration”, Tourism Management, Vol. 30 No. 1, pp. 123-127.

Xie, H., Miao, L., Kuo, P.J. and Lee, B.Y. (2011), “Consumers’ responses to ambivalent online hotel reviews: the role of perceived source credibility and pre-decisional disposition”, International Journal of Hospitality Management, Vol. 30 No. 1, pp. 178-183.

Ye, Q., Law, R. and Gu, B. (2009), “The impact of online user reviews on hotel room sales”, International Journal of Hospitality Management, Vol. 28, pp. 180-182.

Ye, Q., Law, R., Gu, B. and Chen, W. (2011), “The influence of user-generated content on traveler behavior: an empirical investigation on the effects of e-word-of-mouth to hotel online bookings”, Computers in Human Behavior, Vol. 27 No. 2, pp. 634-639.

Ye, Q., Li, H., Wang, Z. and Law, R. (2014), “The influence of hotel price on perceived service quality and value in e-tourism: an empirical investigation based on online traveler reviews. Journal of Hospitality & Tourism Research, Vol. 38 No. 1, pp. 23-39.

Yin, D., Bond, S. and Zhang, H. (2014), “Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews”, MIS Quarterly, Vol. 38 No. 2, pp. 539-560.

Yoo, K.H. and Gretzel, U. (2008), “What motivates consumers to write online travel reviews?”, Information Technology & Tourism, Vol. 10 No. 4, pp. 283-295.

Zhu, F. and Zhang, X. (2010), “Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics”, Journal of Marketing, Vol. 74 No. 2, pp. 133-148.

Zhu, L., Yin, G. and He, W. (2014), “Is this opinion leader’s review useful? Peripheral cues for online reivew helpfulness”, Journal of Electronic Commerce Research, Vol. 15 No. 4, pp. 267-280

L’influence des avis en ligne sur l’intention d’achat du consommateur des produits de l’hébergement touristique : une proposition de typologie des consommateurs marocains

Ouiddad S, Sidmou M. L, (2017), L’influence des avis en ligne sur l’intention d’achat du consommateur des produits de l’hébergement touristique : une proposition de typologie des consommateurs marocains, Question de Management, 2017/3, n°18, pp139-pp153.

Mots-clefs : bouche à oreille électronique, communication, information, variable, crédibilité

Résumé : Cet article a pour objectif de déterminer l’influence du bouche à oreille électronique plus particulièrement dans le secteur du voyage. Les avis en ligne sont l’une des formes du bouche à oreille électronique fournissant des informations aux consommateurs. Ces avis sont généralement considérés comme plus crédibles que les communications des entreprises.

Selon cette études les avantages d’une communication bouche à oreille électronique sont :

  1. “Elle facilite l’accès au type et à la quantité de l’information voulue et associée aux différentes attributions des produits offerts
  2. Elle augmente la facilité de comparaison et d’évaluation des différentes alternatives proposées aux acheteurs
  3. Elle améliore la qualité de l’information reçue de la part du consommateur en comparant ses sources
  4. Elle permet d’organiser et de structurer l’information”

L’étude définit également des variables expliquant le comportement d’achat des consommateurs suite à la consultation d’avis en ligne. Ces variables sont définies en quatre groupes : des variables liées au message, des variables liées au consommateur, des variables liées à la perception du consommateur du l’émetteur du message, et les variables de la réponse comportementale.

Conclusion : L’étude se conclut en indiquant que le bouche à oreille électronique a une influence différente selon les types de profils des récepteurs de l’avis lu. Cet article a ainsi définit des variables liées aux caractéristiques du message, qui déterminent la crédibilité de l’émetteur du message, la confiance, la crédibilité du site web, l’influence interpersonnelle.

L’étude définit ensuite les profils de récepteur de l’avis. Le premier profil correspond à des utilisateurs consultant régulièrement des avis et forums, généralement de jeune âge mais expérimentés sur internet. Ils sont plus en capacité de déterminer et repérer les faux avis.
Le deuxième profil de récepteur correspond à une catégorie définie de “hédonistes cartésiens”. Ce profil est généralement très attentif aux avis, il scrute et est attentifs à tous les commentaires. Ils pensent pouvoir vérifier la crédibilité des commentaires et avis grâce à leur expérience en matière de consultation d’avis en ligne.
Le dernier profil est définit comme “promeneurs”, il s’agit d’une catégorie d’individus représentant la majorité de l’échantillon. Ce profil d’individu considère les avis et forums comme essentiels dans sa phase d’achat, il sera plus découragé par les avis négatifs, véridiques ou non.

Sources :

  • ANRT (2016), Enquête de collecte des indicateurs TIC auprès des ménages et des individus pour l’année 2015, 12e édition, Rapport de l’Agence Nationale de Réglementation des Télécommunications.
  • Arsal, I., Backman, S. et Baldwin, E. (2008), Influence of an online travel community on travel decisions. In P. O’Connor, W. Höpken & U. Gretzel (Eds.), Information and Communication Technologies in Tourism 2008 (pp. 82-93). New York : Springer Wien.
  • Babin, J., Darden, W.R et Griffin, M. (1994), Work and/or Fun : Measuring Hedonic and Utilitarian Shopping Value, Journal of Consumer Research, 20 (March), 644-656.
  • Bahri-Ammari N. et Zitouni M. (2016). Les communautés virtuelles de marque : le rôle de l’engagement du consommateur dans le développement de la fidélité et le bouche à oreille. In Proceedings of the Marketing Spring Colloquy (Vol. 7, 2016, pp : 242-260). URAM
  • Bearden, W.O. et Etzel, M.J. (1982), Reference group influence on product and brand purchase, Journal of Consumer Research, 9, p. 183-194.
  • Bertrandias, L. (2006), Sélection et influence des sources personnelles d’information du consommateur, Thèse de doctorat d’Etat es sciences de gestion, Université des sciences sociales de Toulouse, Institut d’Administration des entreprises.
  • Bickart, B. et Schindler, R.M. (2001), Internet forums as influential sources of consumer information, Journal of Interactive Marketing, 15 (Summer), pp. 31–40.
  •  Biétry, F. et Laroche, P. (2011), L’implication dans l’organisation, le syndicat et/ou la carrière, Revue de Gestion des Ressources Humaines ; Paris 81 (Jul-Sep 2011) : 19-38,77,79.
  • Brousseau, A.D., Couvreur, A. et Loisel, J.P. (2003), Opinions et comportements des consommateurs : Un nouvel indicateur « situations de vie », Exploitation des enquêtes Consommation, CREDOC, Cahier de recherche N°188, Paris.
  • Carricano, M., Poujol, F. et Bertrandias, L. (2010), Analyse de données avec SPSS, Pearson Education France, Paris, 2e édition 2010 – 248 pages
  • Cheung, C. M. K., Lee, M. K. O. et Rabjohn, N. (2008), The impact of electronic word-of-mouth. Internet Research, 18(3), 229.
  • Cheung, C.M.K. et Thadani, D.R. (2010), The effectiveness of word-of-mouth communication : A literature analysis. Paper presented at 23rd Bled eConference eTrust : Implications for the Individual, Enterprises and Society, Bled, Slovenia.
  • Cheung, M., Luo, C., Sia, C. et Chen, H. (2009), Credibility of Electronic Word-ofMouth : Informational and Normative Determinants of On-line Consumer Recommendations. International Journal of Electronic Commerce, 13(4), 9.
  • Chevlier, J.A. et Mayzlin D. (2006), The Effect of Word of Mouth on Sales : Online Book Reviews, Journal of Marketing Research, 43, 3, 345–354.
  • Creusier, J. et Biétry, F. (2014). Analyse comparative des méthodes de classifications : l’exemple du bien-être au travail. Revue Interdisciplinaire Management et Humanisme. Vol 10. P 114-133.
  • Dellarocas, C. Zhang, X. et Awad, N. (2007), Exploring the value of online product reviews in forecasting sales : The case of motion pictures. Journal of Interactive Marketing, 21, 4, 23-45.
  • Doh, S. J. et Hwang, J. S. (2009), How Consumers Evaluate eWOM (Electronic Wordof-Mouth) Messages. Cyberpsychology & Behavior, 12(2), 193-197.
  • Duan, W., Gu, B., & Whinston, A. (2008). The dynamics of online word-of-mouth and product sales-an empirical investigation of the movie industry. Journal of Retailing, 84(2), 233-244
  • Gretzel, U., et Yoo, K. H. (2008), Use and impact of online travel reviews. In P. O’Connor, W. Höpken & U. Gretzel (Eds.), Information and Communication Technologies in Tourism 2008, pp. 35-46, New York : Springer Wien.
  • Hagel III J. et Armstrong A. (1997), Net Gain, Boston, MA : Harvard Business School Press
  • Hennig-Thurau, T., Qwinner, K., Walsh, G., & Gremier, D. (2004). Electronic word of mouth via consumer opinions platforms : What motivates consumers to articulate themselves on the internet. Journal of interactive Marketing, 18(1), 38-52.
  • Hovland, C.I. et Weiss, W. (1951), The influence of source credibility on communication effectiveness, Public Opinion Quarterly, 15, 4, pp. 635-650.
  • Kempf, D.S. (1999), Attitude formation from product trial : distinct role of cognition and affect for hedonic and functional products, Psychology Marketing, Vol 16, janvier, pp.35-50.
  • Kiecker, P. et Cowles, D. (2001), Interpersonal Communication and Personal Influence on the Internet : A Framework for Examining Online Word-of-Mouth. Internet Applications in Euromarketing, 11(2), 71-88.
  • Ling, J. (2010), Intention to use online social networks for travel purposes : A case study at three Bangkok-based universities. AU-GSB e-Journal, Vol. 3, No.2, pp.50-59.
  • Lange-Faria, W. et Elliot, S. (2012), Understanding the role of social media in destination marketing, Tourismos : an international multidisciplinary journal of tourism, Volume 7, Number 1, Spring-Summer 2012, pp. 193-211. Litvin, S. W., Goldsmith, R. E., et Pan, B. (2008), Electronic word-of-mouth in hospitality and tourism management, Tourism Management, 29(3), 458-468.
  • Mendes-Filho, L. et Tan, F. B. (2009), User-generated content and consumer empowerment in the travel industry : a uses & gratifications and dual-process conceptualization, PACIS 2009 Proceedings. Paper 28.
  • Nelson, P. (1970), Information and consumer behavior. Journal of Political Economy, 78(2), pp. 311–329. Munzel, A. and Kunz, W.H. (2014), “Creators, multipliers and lurkers : who contributes and who benefits at online review sites”, Journal of Service Management, Vol. 25 No. 1, pp. 3-3.
  • Ouiddad, S., Sidmou, M.L. (2013), « Le pourvoir d’influence du bouche-à-oreille électronique : quels enjeux pour l’industrie de l’hébergement touristique marocaine », Revue La Cible, AFITEP, N°120, 1er trimestre 2013, pp. 16-21.
  • Park, D. H. et Kim, S. (2008). The effects of consumer knowledge on message processing of electronic word-of – mouth via online consumer reviews. Electronic Commerce Research and Applications, 7(4), 399-410.
  • Schindler, R.M. et Bickart, B. (2005), Published Word of Mouth : Referable, Consumer-Generated Information on the Internet, Online Consumer Psychology : Understanding and Influencing Consumer Behavior in the Virtual World, C.P. in Haugtvedt, K.A. Machleit, and R.F. Yalch (eds.), Hillsdale, NJ : Lawrence Erlbaum Associates, pp. 35-61.
  • Senecal, S. et Nantel J. (2004), The Influence of Online Product Recommendations on Consumers’ Online Choices, Journal of Retailing, 80, 1, pp. 159-169.
  • Srarfi-Tabbane, R. et Hamouda, M. (2012), Impact du bouche à oreille électronique sur l’intention d’achat : cas du consommateur tunisien, 2nd International Symposium ISKO-MAGHREB, November 3d – 4th, Hammamet, Tunisia.
  • Stockdale, R. et Borovicka, M. (2006), Developing an online business community : A travel industry case study. Paper presented at the 39th Annual Hawaii International Conference on System Sciences (HICSS’06).
  • Vernette, E. (2002), Le rôle et le profil des leaders d’opinion pour la diffusion de l’Internet, Décisions Marketing, 25, 1, pp.37-51.
  • Xiang, Z. et Gretzel, U. (2010), Role of social media in online travel information search. Tourism Management, Vol. 31, No.2, pp.179-188.
  • YAYLI, A et BAYRAM, M. (2010), eWOM : The Effects of Online Consumer Review of Purchasing Decision Of Electronic Goods, Marketing Trends 
  • Yoo B. et Donthu N. (2001), Developing and validating a multidimensional consumer-based brand equity scale, Journal of Business Research, 52, 1, 1-1.

Vote or not? How various information cues affect helpfulness voting of online reviews

Deng W., Ming Yi M., Lu Y., (2020), Vote or not? How various information cues affect helpfulness voting of online reviews, Online Information Review, Vol. 44

Mots-clefs : avis, notes, consommateur, vote d’utilité initiale, vote d’utilité cumulative, attributs, indices heuristiques, indices systématiques.

Résumé : Cet article a pour but de définir et d’étudier les facteurs influencent et déterminant les notes en ligne des consommateurs. L’article se concentre plus particulièrement sur les notes attribuées à des commentaires et avis de produits en ligne. Ces notes ayant pour but de diriger le consommateur vers les avis les plus utiles et les plus sérieux. Les notes attribuées aux avis s’opposent ainsi aux avis classés de facon chronologique qui n’offrent que des possibilités inégales d’obtenir un vote.
En effet, un vote pertinent ne recevra peut être pas suffisamment de notes pour être utile au consommateur car le classement chronologique l’éloigne. Cette étude tente ainsi de comprendre comment ces notes d’avis fonctionnent.

L’auteur indique, suite à ses recherches, que les notes peuvent être influencées par les notes précédentes. Il définit deux étapes du processus de vote : “le vote d’utilité initiale” qui se réfère à une situation où l’avis n’est pas encore évalué, il s’agit donc de la première note. La deuxième étape est le “vote d’utilité cumulative” qui cette fois concerne une situation dans laquelle il existe au minimum déjà une note. Les notes précédentes peuvent donc influencer la note future.

L’auteur définit que les votes d’utilité initiale et cumulatif sont influencés par le nombre de mots et les attributs du produit.

Conclusion : Le système de notation d’un avis a pour but de simplifier la démarche du consommateur et de l’aider à mesurer la qualité des évaluations en trouvant les avis utiles plus rapidement et facilement. Cependant cette étude remet en cause l’efficacité de cette pratique et de ce mécanisme. Elle indique que plusieurs facteurs influencent le processus de vote agrégé des évaluations en ligne.
L’étude définit deux étapes précédemment définie : “le vote d’utilité initiale” et le “vote d’utilité cumulative” qui n’ont pas les mêmes effets et causes car le vote cumulatif peut être influencé par les votes déjà existants.
Les indices heuristiques (évaluation des produits, comptage des mots) et systématiques (attributs des produits dans le contenu textuel) ont un impact plus important sur les deux étapes de votes.

Sources :

Abirami, A.M. and Askarunisa, A. (2017), “Sentiment analysis model to emphasize the impact of online reviews in healthcare industry”, Online Information Review, Vol. 41 No. 4, pp. 471-486.

Axsom, D., Yates, S. and Chaiken, S. (1987), “Audience response as a heuristic cue in persuasion”, Journal of Personality and Social Psychology, Vol. 53 No. 1, pp. 30-40.

Bohner, G., Moskowitz, G.B. and Chaiken, S. (1995), “The interplay of heuristic and systematic processing of social information”, European Review of Social Psychology, Vol. 6 No. 1, pp. 33-68.

Chaiken, S. and Ledgerwood, A. (2012), “A theory of heuristic and systematic information processing”, in Lange, P.A.M.V., Kruglanski, A.W. and Higgins, E.T. (Eds), Handbook of Theories of Social Psychology, SAGE Publications, London, Vol. 1, pp. 246-267.

Chaiken, S., Liberman, A. and Eagly, A.H. (1989), “Heuristic and systematic information processing within and beyond the persuasion context”, in Uleman, J.S. and Bargh, J.A. (Eds), Unintended Thought, Guilford, New York, pp. 212-252.

Chen, S. and Chaiken, S. (1999), “The heuristic–systematic model in its broader context”, in Chaiken, S. and Trope, Y. (Eds), Dual-Process Theories in Social Psychology, Guilford, New York, pp. 73-96.

Chen, Z. and Lurie, N.H. (2013), “Temporal contiguity and negativity bias in the impact of online word of mouth”, Journal of Marketing Research, Vol. 50 No. 4, pp. 463-476.

Chen, S., Duckworth, K. and Chaiken, S. (1999), “Motivated heuristic and systematic processing”, Psychological Inquiry, Vol. 10 No. 1, pp. 44-49.

Cheng, Y.H. and Ho, H.Y. (2015), “Social influence’s impact on reader perceptions of online reviews”, Journal of Business Research, Vol. 68 No. 4, pp. 883-887.

Cheung, C.M.K. and Thadani, D.R. (2012), “The impact of electronic word-of-mouth communication: a literature analysis and integrative model”, Decision Support Systems, Vol. 54 No. 1, pp. 461-470.

Cheung, C.M.K., Lee, M.K.O. and Rabjohn, N. (2008), “The impact of electronic word-of-mouth”, Internet Research, Vol. 18 No. 3, pp. 229-247.

Cheung, M.Y., Sia, C.L. and Kuan, K.K.Y. (2012), “Is this review believable? A study of factors affecting the credibility of online consumer reviews from an ELM perspective”, Journal of the Association for Information Systems, Vol. 13 No. 8, pp. 618-635.

Chua, A.Y. and Banerjee, S. (2016), “Helpfulness of user-generated reviews as a function of review sentiment, product type and information quality”, Computers in Human Behavior, Vol. 54, pp. 547-554.

CNNIC (2015), “2014 China online travel booking market research report”, pp. 18-21, available at: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/lxgb/201507/P020150715651462758347.pdf//2018-8-20.

Constantiou, I., Hoebel, N. and Zicari, R.V. (2012), “How do framing strategies influence the user’s choice of content on the web?”, Concurrency and Computation: Practice and Experience, Vol. 24 No. 17, pp. 2207-2220.

Costa, A.F., Traina, A.J.M., Jr, C.T. and Faloutsos, C. (2016), “Vote-and-comment: modeling the coevolution of user interactions in social voting web sites”, 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, pp. 91-100.

Danescu-Niculescu-Mizil, C., Kossinets, G., Kleinberg, J. and Lee, L. (2009), “How opinions are received by online communities: a case study on Amazon.com helpfulness votes”, WWW ’09 Proceedings of the 18th International Conference on World Wide Web, New York, ACM Press, pp. 141-150.

Davis, J.M. and Agrawal, D. (2018), “Understanding the role of interpersonal identification in online review evaluation: an information processing perspective”, International Journal of Information Management, Vol. 38 No. 1, pp. 140-149.

Ferran, C. and Watts, S. (2008), “Videoconferencing in the field: a heuristic processing model”, Social Science Electronic Publishing, Vol. 54 No. 9, pp. 1565-1578.

Fiske, S.T. and Taylor, S.E. (1991) [1984], Social Cognition, 2nd ed., McGraw-Hill, New York.

Ghose, A. and Ipeirotis, P.G. (2011), “Estimating the helpfulness and economic impact of product reviews: mining text and reviewer characteristics”, Social Science Electronic Publishing, Vol. 23 No. 10, pp. 1498-1512.

Godes, D. and Mayzlin, D. (2004), “Using online conversations to study word-of-mouth communications”, Marketing Science, Vol. 23 No. 4, pp. 545-560.

Griffin, R.J., Neuwirth, K., Giese, J. and Dunwoody, S. (2002), “Linking the heuristic-systematic model and depth of processing”, Communication Research, Vol. 29 No. 6, pp. 705-732.

Gupta, P. and Harris, J. (2010), “How e-WOM recommendations influence product consideration and quality of choice: “motivation to process information perspective”, Journal of Business Research, Vol. 63 No. 9, pp. 1041-1049.

He, W., Tian, X., Tao, R., Zhang, W., Yan, G. and Akula, V. (2017), “Application of social media analytics: a case of analyzing online hotel reviews”, Online Information Review, Vol. 41 No. 7, pp. 921-935.

Huang, A.H., Chen, K., Yen, D.C. and Tran, T.P. (2015), “A study of factors that contribute to online review helpfulness”, Computers in Human Behavior, Vol. 48 No. C, pp. 17-27.

Hunnicutt, S. and Carlberger, J. (2001), “Improving word prediction using Markov models and heuristic methods”, Augmentative and Alternative Communication, Vol. 17 No. 4, pp. 255-264.

Jeong, H.-J. and Koo, D.-M. (2015), “Combined effects of valence and attributes of e-WOM on consumer judgment for message and product”, Internet Research, Vol. 25 No. 1, pp. 2-29.

Korfiatis, N., Rodríguez, D. and Sicilia, M.A. (2008), “The impact of readability on the usefulness of online product reviews: a case study on an online bookstore”, in Lytras, M.D., Carroll, J.M., Damiani, E. and Tennyson, R.D. (Eds), World Summit on the Knowledge Society: Emerging Technologies and Information Systems for the Knowledge Society, Springer-Verlag, Berlin, pp. 423-432.

Korfiatis, N., García-Bariocanal, E. and Sánchez-Alonso, S. (2012), “Evaluating content quality and helpfulness of online product reviews: the interplay of review helpfulness vs review content”, Electronic Commerce Research and Applications, Vol. 11 No. 3, pp. 205-217.

Lampe, C., Johnston, E.W. and Resnick, P. (2007), “Follow the reader: filtering comments on Slashdot”, Proceedings of the 2007 Conference on Human Factors in Computing Systems, CHI 2007, San Jose, California, USA, April 28 – May 3, 2007, DBLP.

Lan, Q., Ma, H. and Li, G. (2018), “Characters-based sentiment identification method for short and informal Chinese text”, Information Discovery and Delivery, Vol. 46 No. 1, pp. 57-66.

Lee, J. and Lee, J.N. (2009), “Understanding the product information inference process in electronic word-of-mouth: an objectivity–subjectivity dichotomy perspective”, Information and Management, Vol. 46 No. 5, pp. 302-311.

Lee, G. and Xia, W. (2011), “A longitudinal experimental study on the interaction effects of persuasion quality, user training, and first-hand use on user perceptions of new information technology”, Information and Management, Vol. 48 No. 7, pp. 288-295.

Lee, Y.J., Hosanagar, K. and Tan, Y. (2015), “Do i follow my friends or the crowd? Information cascades in online movie ratings”, Social Science Electronic Publishing, Vol. 61 No. 9, pp. 2241-2258.

Liu, Z. and Park, S. (2015), “What makes a useful online review? Implication for travel product websites”, Tourism Management, Vol. 47 No. 47, pp. 140-151.

López-López, I. and Parra, J.F. (2016), “Is a most helpful eWOM review really helpful? The impact of conflicting aggregate valence and consumer’s goals on product attitude”, Internet Research, Vol. 26 No. 4, pp. 827-844.

Metzger, M.J., Flanagin, A.J. and Medders, R.B. (2010), “Social and heuristic approaches to credibility evaluation online”, Journal of Communication, Vol. 60 No. 3, pp. 413-439.

Moe, W.W. and Trusov, M. (2011), “Measuring the value of social dynamics in online product ratings forums”, Journal of Marketing Research, Vol. 48 No. 3, pp. 444-456.

Mudambi, S.M. and Schuff, D. (2010), “What makes a helpful online review? A study of customer reviews on amazon.com”, Society for Information Management and the Management Information Systems Research Center, Vol. 34 No. 1, pp. 185-200.

Ngo-Ye, T.L., Sinha, A.P. and Sen, A. (2017), “Predicting the helpfulness of online reviews using a scripts-enriched text regression model”, Expert Systems with Applications, Vol. 71, pp. 98-110.

Otterbacher, J. (2009), “Helpfulness in online communities: a measure of message quality”, Proceedings of the 27th International Conference on Human Factors in Computing Systems, New York, ACM, pp. 955-964.

Petty, R.E., Wells, G.L., Heesacker, M., Brock, T.C. and Cacioppo, J.T. (1983), “The effects of recipient posture on persuasion: a cognitive response analysis”, Personality and Social Psychology Bulletin, Vol. 9 No. 2, pp. 209-222.

Qiu, L. and Li, D. (2010), “Effects of aggregate rating on eWOM acceptance: an Attribution Theory perspective”, PACIS 2010 Proceedings, Paper No. 147, Taipei, July 9-12.

Schlosser, A.E. (2005), “Posting versus lurking: communicating in a multiple audience context”, Journal of Consumer Research, Vol. 32 No. 2, pp. 260-265.

Sparks, B.A., Perkins, H.E. and Buckley, R. (2013), “Online travel reviews as persuasive communication: the effects of content type, source, and certification logos on consumer behavior”, Tourism Management, Vol. 39 No. 2, pp. 1-9.

Tam, K.Y. and Ho, S.Y. (2005), “Web personalization as a persuasion strategy: an elaboration likelihood model perspective”, Information Systems Research, Vol. 16 No. 3, pp. 271-291.

Taylor, S.E., Fiske, S.T., Etcoff, N.L. and Ruderman, A.J. (1978), “Categorical and contextual bases of person memory and stereotyping”, Journal of Personality and Social Psychology, Vol. 36 No. 7, pp. 778-793.

Tirunillai, S. and Tellis, G.J. (2012), “Does chatter really matter? Dynamics of user-generated content and stock performance”, Marketing Science, Vol. 31 No. 2, pp. 198-215.

Todorov, A., Chaiken, S. and Henderson, M.D. (2002), “The heuristic-systematic model of social information processing”, The Persuasion Handbook: Developments in Theory and Practice, pp. 195-211.

Tversky, A. and Kahneman, D. (1974), “Judgment under uncertainty: heuristics and biases”, Science, Vol. 185 No. 4157, pp. 1124-1131.

Walther, J.B., Liang, Y., Ganster, T., Wohn, D.Y. and Emington, J. (2012), “Online reviews, helpfulness ratings, and consumer attitudes: an extension of congruity theory to multiple sources in web 2.0”, Journal of Computer-Mediated Communication, Vol. 18 No. 1, pp. 97-112.

Wang, R.Y. and Strong, D.M. (1996), “Beyond accuracy: what data quality means to data consumers”, Journal of Management Information Systems, Vol. 12 No. 4, pp. 5-33.

Willemsen, L.M., Neijens, P.C., Bronner, F. and De Ridder, J.A. (2011), “‘Highly recommended!’ the content characteristics and perceived usefulness of online consumer reviews”, Journal of Computer-Mediated Communication, Vol. 17 No. 1, pp. 19-38.

Yang, S.-B., Shin, S.-H., Joun, Y. and Koo, C. (2016), “Exploring the comparative importance of online hotel reviews’ heuristic attributes in review helpfulness: a conjoint analysis approach”, Journal of Travel and Tourism Marketing, Vol. 34 No. 7, pp. 963-985.

Yin, R. (2002), Case Study: Research Design and Methods, Sage Publication, New Delhi.

Zhang, R. and Tran, T. (2010), “Helpful or unhelpful: a linear approach for ranking product reviews”, Journal of Electronic Commerce Research, Vol. 11 No. 3, pp. 220-230.

Zhang, W. and Watts, S. (2008), “Capitalizing on content: information adoption in two online communities”, Journal of the Association for Information Systems, Vol. 9 No. 2, pp. 73-94.

Zhang, K.Z.K., Zhao, S.J., Cheung, C.M.K. and Lee, M.K.O. (2014), “Examining the influence of online reviews on consumers’ decision-making: a heuristic–systematic model”, Decision Support Systems, Vol. 67, pp. 78-89.