Measuring the quality of e-banking portals.

Bauer, H.H., Hammerschmidt, M. and Falk, T. (2005). Measuring the quality of e-banking portals. International Journal of Bank Marketing, 23, pp. 153–175.

Mots clefs : Banking, Electronic commerce, Service delivery, Service quality assurance.

Depuis ces dernières années, les établissements bancaires se munissent de nouveaux outils pour gagner des parts de marché. De nouvelles innovations voient le jour, tel que les sites internet pour les services bancaires en ligne. Cet étude reprendre la définition d’un site internet de qualité pour comparer ceux des banque pour en tirer les déterminants qui crée la différence chez l’utilisateur.

 Développement :

Dans le secteur bancaire pour qu’un acteur soit rentable, il nécessite qu’il soit fidèle. Ceci est le premiers coût des banques qui investissent via des outils tel que les sites internet pour fidéliser leur client. Cela a mené au développement de ces site sont de réel interface pour les utilisateurs qui en jugerait la vitrine d’une agence tel qu’il jugerait le site en ligne.

De plus, l’ensemble des spectateurs de site web bancaire sont devenu des acteurs de ces sites en pouvant demander, réclamer des services. Il se crée de nouveau « espace client » en ligne pour un suivi plus personnalisé. Cela permet de proposer de nouveau service, en proposant l’ensemble de la gamme. Chaque acteur bancaire doit se crée un identité et apporte sa conception du service bancaire en ligne pour obtenir un environnement qui répond à ses critères et ceux des utilisateurs.

La définition d’un site internet de service bancaire, se détermine par sa fonctionnalité afin que tous les information circule correctement et que son utilisateur soit guidé de manière fluide. Il doit être accessible, à tout heure et de quel n’importe endroit avec une connexion internet. Enfin, il doit être ludique, et personnalisable. Ces critères sont tout aussi important que pour le client soit en confiance et que la relation devienne pérenne.

Conclusion :

Suite au résultats obtenu de sa recherche empirique, il y a deux éléments qui apportent une réelle valeur ajouté aux service bancaire en ligne ce sont le plaisir lors de son utilisation, qui va créer du divertissement en faisant devenir le client acteur de sa recherche et de sa futur demande. Lui-même va construire et personnalisé son espace, et prendra du plaisir a consulter sa banque en ligne, puis sera en demande de nouveau service pour améliorer son confort.

Références Bibliographiques :

Afuah, A. and Tucci, C. (2001), Internet Business Models and Strategies, Boston, MA.

Akaike, H. (1974), “A new look at the statistical model identification”, IEEE Transactions on Automatic Control, Vol. 19, pp. 716-23.

Anderson, C.F. and Lehmann, D.R. (1994), “Customer satisfaction market share and profitability: findings from Sweden”, Journal of Marketing, Vol. 58 No. 3, pp. 53-66.

Bagozzi, R. and Baumgartner, H. (1994), “The evaluation of structural equation models and hypothesis testing”, in Bagozzi, R. (Ed.), Principles of Marketing Research, Cambridge, pp. 386-422.

Bauer, H.H. and Hammerschmidt, M. (2002), “Financial portals in the internet”, Proceedings of the WSEAS Conference on E-Commerce, Athens.

Baumgartner, H. and Homburg, Ch. (1996), “Applications of structural equation modeling in marketing and consumer research: a review”, International Journal of Research in Marketing, Vol. 13 No. 2, pp. 139-61.

Bergen, M., Dutta, S. and Shugan, S.M. (1996), “Branded variants: a retail perspective”, Journal of Marketing Research, Vol. 33, pp. 9-19.

Berry, L.L. (1987), “Big ideas in services marketing”, The Journal of Services Marketing, Vol. 1 No. 1, pp. 5-9. 173

Blanchard, A. and Horan, T. (1998), “Virtual communities and social capital”, Social Science Computer Review, Vol. 16 No. 3, pp. 293-307.

Brandt, D.R. (1988), “How service marketers can identify value-enhancing service elements”, The Journal of Services Marketing, Vol. 2 No. 3, pp. 35-41.

Broderick, A.J. and Vachirapornpuk, S. (2002), “Service quality in internet banking: the importance of customer role”, Marketing Intelligence & Planning, Vol. 20 No. 6, pp. 327-35.

Byrne, B. (1998), Structural Equation Modeling with LISREL, PRELIS and SIMPLIS, London. Caruana, A. (2002), “Service loyalty – the effects of service quality and the mediating role of customer satisfaction”, European Journal of Marketing, Vol. 36 No. 7/8, pp. 811-28.

Churchill, G. (1987), Marketing Research, 4th ed., Fort Worth, TX.

Cox, J. and Dale, B.G. (2001), “Service quality and e-commerce: an exploratory analysis”, Managing Service Quality, Vol. 11 No. 2, pp. 121-31.

Cronin, J. and Taylor, S. (1992), “Measuring service quality: a re-examination and extension”, Journal of Marketing, Vol. 56, pp. 55-69.

Csikszentmihalyi, M. (1988), “The flow experience and its significance for human psychology”, in Csikszentmihalyi, M. and Csikszentmihalyi, I. (Eds), Optimal Experience: Psychological Studies of Flow in Consciousness, Cambridge University Press, Cambridge, pp. 15-35.

Dabholkar, P.A. (1996), “Consumer evaluations of new technology-based self-service options: an investigation of alternative models of service quality”, International Journal of Research in Marketing, Vol. 13 No. 1, pp. 29-52.

Fornell, C. and Larcker, D. (1981), “Evaluating structural equation models with unobservable variables and measurement error”, Journal of Marketing Research, Vol. 18 No. 1, pp. 39-50.

Furst, K., Lang, W.W. and Nolle, D.E. (2002), “Internet banking”, Journal of Financial Services Research, Vol. 22 No. 1/2, pp. 95-117.

Gerbing, D. and Anderson, J. (1988), “An updated paradigm for scale development incorporating unidimensionality and its assessment”, Journal of Marketing Research, Vol. 25, pp. 186-92.

Gounaris, S. and Dimitriadis, S. (2003), “Assessing service quality on the web: evidence from business-to-consumer portals”, Journal of Services Marketing, Vol. 17 No. 5, pp. 529-48.

Gro ̈nroos, C. (1990), “Relationship approach to marketing in service contexts”, Journal of Business Research, Vol. 20 No. 1, pp. 3-11.

Gro ̈nroos, C., Heinonen, F., Isoniemi, K. and Lindholm, M. (2000), “The NetOffer model: a case example from the virtual marketspace”, Management Decision, Vol. 38 No. 4, pp. 243-52.

Hoffman, D.L. and Novak, T.P. (1996), “Marketing in hypermedia computer-mediated environments”, Journal of Marketing, Vol. 60, pp. 50-68.

Hughes, T. (2003), “Marketing challenges in e-banking: standalone or integrated?”, Journal of Marketing Management, Vol. 19, pp. 1067-85.

Huizingh, E.K.R.E. (2002), “The antecedents of web site performance”, European Journal of Marketing, Vol. 36, pp. 1225-48.

Jayawardhena, C. (2004), “Measurement of service quality in internet banking: the development of an instrument”, Journal of Marketing Management, Vol. 20, pp. 185-207.

Jun, M. and Cai, S. (2001), “The key determinants of internet banking service quality: a content analysis”, International Journal of Bank Marketing, Vol. 19 No. 7, pp. 276-91.

174 Kano, N. (1984), “Attractive quality and must-be quality”, The Journal of the Japanese Society for Quality Control, pp. 39-48.

Kelley, S.W. and Davis, M.A. (1994), “Antecedents to customer expectations for service recovery”, Journal of the Academy of Marketing Science, Vol. 22 No. 1, pp. 52-61.

Mahajan, V., Srinivasan, R. and Wind, J. (2002), “The dot.com retail failures of 2000: were there any winners?”, Journal of the Academy of Marketing Science, Vol. 30, pp. 474-86.

Meuter, M.L., Ostrom, A.L., Roundtree, R.I. and Bitner, M.J. (2000), “Self-service technologies: understanding customer satisfaction with technology-based service encounters”, Journal of Marketing, Vol. 64, pp. 50-64.

Novak, T.P., Hoffman, D.L. and Yung, Y-F. (2000), “Measuring the customer experience in online environments”, Marketing Science, Vol. 19 No. 1, pp. 22-42.

Nunnally, J. (1978), Psychometric Theory, 2nd ed., New York, NY.

Oliver, R.L. (1997), Satisfaction: A Behavioral Perspective on the Consumer, New York, NY.

Olsen, L.L. and Johnson, M.D. (2003), “Service equity, satisfaction, and loyalty: from transaction-specific to cumulative evaluations”, Journal of Service Research, Vol. 5 No. 3, pp. 184-95.

Parasuraman, A. and Grewal, D. (2000), “The impact of technology on the quality-value-loyalty chain: a research agenda”, Journal of the Academy of Marketing Science, Vol. 28, pp. 168-74.

Parasuraman, A., Zeithaml, V. and Berry, L.L. (1988), “SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality”, Journal of Retailing, Vol. 64, pp. 12-40.

Payne, A. and Holt, S. (2001), “Diagnosing customer value”, British Journal of Management, Vol. 12, pp. 159-82.

Reibstein, D.J. (2002), “What attracts customers to online stores, and what keeps them coming back?”, Journal of the Academy of Marketing Science, Vol. 30, pp. 465-73.

Reichheld, F.F. and Sasser, W.E. (1990), “Zero defections: quality comes to services”, Harvard Business Review, Vol. 68 No. 5, pp. 2-8.

Reichheld, F.F. and Schefter, P. (2000), “E-loyalty – your secret weapon on the web”, Harvard Business Review, Vol. 78 No. 4, pp. 105-13.

Santos, J. (2003), “E-service quality: a model of virtual service quality dimensions”, Managing Service Quality, Vol. 13 No. 3, pp. 233-46.

Shankar, V., Smith, A.K. and Rangaswamy, A. (2003), “Customer satisfaction and loyalty in online and offline environments”, International Journal of Research in Marketing, Vol. 20 No. 2, pp. 153-75.

Srinivasan, S.S., Anderson, R. and Ponnavolu, K. (2002), “Customer loyalty in e-commerce”, Journal of Retailing, Vol. 78, pp. 41-50.

Strieter, J., Gupta, A.K., Raj, S.P. and Wilemon, D. (1999), “Product management and the marketing of financial services”, International Journal of Bank Marketing, Vol. 17 No. 7, pp. 342-54.

Szymanski, D.M. and Hise, R.T. (2000), “E-satisfaction: an initial examination”, Journal of Retailing, Vol. 76 No. 3, pp. 309-22.

van Riel, A., Liljander, V. and Jurriens, P. (2001), “Exploring consumer evaluations of e-services: a portal site”, International Journal of Service Industry Management, Vol. 12 No. 3/4, pp. 359-77.

W3B (2000), “Ergebnisse der 14. W3B umfrage”, available at: www.w3b.de

Yang, Z., Peterson, R.T. and Huang, L. (2001), “Taking the pulse of internet pharmacies”, Marketing Health Services, pp. 5-10.

Zeithaml, V.A., Parasuraman, A. and Malhotra, A. (2002), “Service quality delivery through 175 web sites”, Journal of the Academy of Marketing Science, Vol. 30, pp. 362-75.

A comprehensive examination of internet banking user behaviour: evidence from customers yet to adopt, currently using and stopped using.

Wu, M., Jayawardhena, C., & Hamilton, R. (2014). A comprehensive examination of internet banking user behaviour: evidence from customers yet to adopt, currently using and stopped using. Journal of marketing management.

Mot clefs: Behavior, internet, e-banking, customer, bank, fintech.

Cette étude examine les intentions comportementales liées à l’adoption des services bancaires en ligne via des catégories de clients. Elle est aussi basé sur des connaissances existantes sur le comportement de des utilisateurs des services bancaire en ligne.Cette recherche développe un modèle qui est fondé sur le modèle d’acceptation de la technologie concernant 614 clients de banque en ligne en Chine. La valeur perçue est le moteur le plus important pour expliquer toutes les catégories de comportements des clients liés à l’IB.Pour développer les résultats obtenu des sondages, il intègre également des théories afin de développer leur modèle d’adoption des utilisateurs de service bancaire en ligne. Avec le profil clients évaluant selon des hypothèses tout ce qui concerne le compromis entre les avantages et les sacrifices associés à l’utilisation de ces services en ligne.

 

 Développement :

Dans le contexte de cette recherche à plusieurs axes, la partie théorique est basé sur 2 théories attitudinale. La théorie de l’action raisonnée et la théorie du comportement planifié ce qui permet d’identifier les déterminants du comportements et ses intentions. Puis celle-ci, ont évolué en incorporant le contrôle du comportement perçu qui reflètent ce que gens capte les opportunités et les ressources nécessaires pour exécuter le comportement recherché. L’intérêt est de comprendre si les capteurs sont favorable à l’exécution de ce nouveau comportement comme l’adoption des services bancaire en ligne.

Le résultat des recherches ont démontrés que chaque utilisateurs des services de banque ou ligne ou de son adoption, le client mesure par les avantages qu’il peut en avoir et pas le cout. Ce qui mène à penser que c’est au établissement financier de s’adapter pour que créer une impression de faible cout en mettant en avant via des campagnes de communication tous les avantages que présente ce modèle bancaire. La recherche explicite que l’interface web doit être ludique afin que le client se familiarise avec son utilisation. De plus, l’utilité perçu pour les non-utilisateurs des services bancaire en ligne doit être mit en avant, car l’utilité est un facteur qui prône dans le processus comportemental du futur client.

Conclusion :

 Enfin, pour que les services bancaire en ligne deviennent une banque à long terme commune et connaissent un taux d’adoption évolutif. Les acteurs du marché doivent investir dans la communication autour de son utilité, de son faibles coût et sa sécurité. Mais aussi présenter les avantages que cela peut apporter à l’utilisateur. C’est donc aux établissements financier de rendre son utilisation facile et ludique afin, que chaque nouveau client deviennent le premier communiquant.

Bibliographie :

Abu-Shanab, E. (2013). Income divide: A determinant of technology acceptance. International Arab Journal of e-Technology, 3, 121-127. Retrieved from http://www.iajet.org/iajet_files/vol.3/no.2/Income%20Divide_%20a%20Determinant%20 of%20Technology%20Acceptance.pdf

AbuShanab, E. & Pearson, J.M. (2007). Internet banking in Jordan: The unified theory of acceptance and use of technology (UTAUT) perspective. Journal of Systems and Information Technology, 9, 78-97. DOI: 10.1108/13287260710817700

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & Beckmann, J. (Eds.), Action control: from Cognition to behavior (pp.11-35). Berlin: Springer-Verlag.

Ajzen, I. (1988). Attitudes, personality, and behavior. Milton Keynes: Open University Press. Al-Smadi, M.O. (2012). Factors affecting adoption of electronic banking: An analysis of the perspectives of banks’ customers. International Journal of Business and Social Science, 3, 294-309. Retrieved from http://connection.ebscohost.com/c/articles/87607373/factors-

affecting-adoption-electronic-banking-analysis-perspectives-banks-customers

Al-Somali, S.A., Gholami, R. & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29, 130-141. DOI:

Alsajjan, B. & Dennis, C. (2010). Internet banking acceptance model: cross-market examination. Journal of Business Research, 63, 957-963. DOI:

http://english.analysys.com.cn/article.php?aid=90903

Baumgartner, H. & Homburg, C. (1996). Applications of structural equation modeling in

marketing and consumer research: A review. International Journal of Research in

Marketing, 13, 139-161. DOI: 10.1016/0167-8116(95)00038-0

Benbasat, I. & Barki, H. (2007). Quo Vadis, TAM? Journal of the Association for Information

Systems, 8, 211-218. Retrieved from http://aisel.aisnet.org/jais/vol8/iss4/16

Çelik, H. (2008). What determines Turkish customers’ acceptance of internet banking? International Journal of Bank Marketing, 26, 353-370. DOI: 10.1108/02652320810894406 Chan, R.Y. & Lau, L. (1998). A test of the Fishbein-Ajzen behavioral intentions model under Chinese cultural settings: Are there any differences between PRC and Hong Kong consumers? Journal of Marketing Practice: Applied Marketing Science, 4, 85-101. DOI:

10.1108/EUM0000000004490

Chan, S. & Lu, M. (2004). Understanding internet banking adoption and use behavior: A Hong Kong perspective. Journal of Global Information Management, 12, 21-43. DOI: 10.4018/jgim.2004070102

Chang, H.H. & Wang, H. (2011). The moderating effect of customer perceived value on online shopping behaviour. Online Information Review, 35(3), 333-359. DOI: 10.1108/14684521111151414

Chau, V.S. & Ngai, L.W.L.C. (2010). The youth market for internet banking services: Perceptions, attitude and behaviour. Journal of Services Marketing, 24(1), 42-60. DOI: 10.1108/08876041011017880

Cheng, T.C.E., Lam, D.Y.C. & Yeung, A.C.L. (2006). Adoption of internet banking: An empirical study in Hong Kong. Decision Support System, 42, 1558-1572. DOI: 10.1016/j.dss.2006.01.002

10.1016/j.jbusres.2008.12.014

Analysys International (2010). The centralization of China online banking market is increased,

Chin, W.W. (1998). The partial least squares approach to structural equation modeling. In A.M. George (Eds.), Modern methods for business research (pp.295-336). Mahwah, N.J: Lawrence Erlbaum Associates.

Chin, W.W. (2010). How to write up and report pls analyses. In V.E. Vinzi, et al. (Eds.), Handbook of partial least square: Concepts, methods and applications (pp.655-689). Berlin, Heidelberg: Springer.

China Internet Network Information Centre [CNNIC] (2013). Statistical report on Internet development in China. Retrieved from http://www1.cnnic.cn/IDR/ReportDownloads/201302/P020130221391269963814.pdf

Chong, A.Y., Ooi, K., Lin, B. & Tan, B. (2010). Online banking adoption: An empirical analysis. International Journal of Bank Marketing, 28, 267-287. DOI: 10.1108/02652321011054963

Cronin, Jr. J.J., Brady, M.K., Brand, R.R., Hightower Hr., R. & Shemwell, D.J. (1997). A cross- sectional test of the effect and conceptualization of service value. Journal of Services Marketing, 11, 375-391. DOI: 10.1108/08876049710187482

Davies, H., Leung, T.K., Luk, S.T.K. & Wong, Y. (1995). The benefits of ‘Guanxi’: The value of relationships in developing the Chinese market. Industrial Marketing Management, 24(6), 207-214. DOI:

Davis, F.D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38, 475-487. DOI: 10.1006/imms.1993.1022

Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982-1003. DOI: 10.1287/mnsc.35.8.982

Dean, D.H. (2008). Shopper age and the use of self-service technologies. Managing Service Quality, 18, 225-38. DOI: 10.1108/09604520810871856

Deng, Z., Lu, Y., Wei, K.K. & Zhang, J. (2010). Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International Journal of Information Management, 30, 289–300. DOI: 10.1016/j.ijinfomgt.2009.10.001

Dodds, W.B., Monroe, K.B. & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of Marketing Research, 28, 307-319. DOI: 10.2307/3172866

Eggert, A. & Ulaga, W. (2002). Customer Perceived Value: A substitute for satisfaction in business markets? Journal of Business & Industrial Marketing, 17, 107-118. DOI: 10.1108/08858620210419754

Eriksson, K., Kerem, K. & Nilsson, D. (2005). Customer acceptance of internet banking in Estonia. International Journal of Bank Marketing, 23, 200-216. DOI: 10.1108/02652320510584412

Eriksson, K., Kerem, K. & Nilsson, D. (2008). The adoption of commercial innovations in the former Central and Eastern European markets: The case of internet banking in Estonia. International Journal of Bank Marketing, 26, 154–169. DOI: 10.1108/02652320810864634

Eriksson, K. & Nilsson, D. (2007). Determinants of the continued use of self-service technology: The case of internet banking. Technovation, 27, 159-167. DOI: 10.1016/j.technovation.2006.11.001

China Financial Certification Authority [CFCA] (2010). 2010 Report on electronic banking in

China. Beijing: China Financial Certification Authority.

China Financial Certification Authority [CFCA] (2013). 2013 Report on electronic banking in

China. Beijing: China Financial Certification Authority.

10.1016/0019-8501(94)00079-C

Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319-340. DOI: 10.2307/249008

43

 

Fishbein, M. & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Boston, MA: Addison-Wesley.

Flavián, C., Guinalíu, M. & Torres, E. (2006). How bricks-and-mortar attributes affect online banking adoption. International Journal of Bank Marketing, 24, 406-423. DOI: 10.1108/02652320610701735

Fornell, C. & Bookstein, F.L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440-452. DOI: 10.2307/3151718

Froehle, C.M. & Roth, A.V. (2004). New measurement scales for evaluating perceptions of the technology-mediated customer service experience. Journal of Operations Management, 22, 1-21. DOI: 10.1016/j.jom.2003.12.004

Gallarza, M.G. & Saura, I.G. (2006). Value dimensions, perceived value, satisfaction and loyalty: An investigation of university students’ travel behaviour. Tourism Management, 27, 437-452. DOI: 10.1016/j.tourman.2004.12.002

Gefen, D. (2003). TAM or just plain habit: A look at experienced online shoppers. Journal of End User Computing, 15(3), 1-13. DOI: 10.4018/joeuc.2003070101

Geisser, S. (1975). A predictive approach to the random effect model. Biometrika, 61, 101– 107. DOI: 10.1093/biomet/61.1.101

Gerrard, P., Cunningham, J.B. & Devlin, J.F. (2006). Why Consumers Are Not Using Internet Banking: A Qualitative Study. Journal of Services Marketing, 20, 160-168. DOI: 10.1108/08876040610665616

Henseler, J. (2007). A new simple approach to multi-group analysis in partial least squares path modeling. In H. Martens, T. Næs, & M. Martens (Eds.), Causalities explored by indirect observation: Proceedings of the 5th International Symposium on PLS and related methods (pp. 104-107), Oslo.

Henseler, J. (2012). PLS-MGA: A non-parametric approach to partial least squares-based multi-group analysis. In W. Gaul et al. (Eds.), Challenges at the interface of data analysis, computer science, and optimization: Studies in classification, data analysis, and knowledge organization (pp. 495-501), Berlin, Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-642- 24466-7_50

Henseler, J., Ringle, C.M. & Sinkovices, R.R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319. DOI: 10.1108/S1474-7979(2009)0000020014

Hernandez, J.M. & Mazzon, J.A. (2007). Adoption of internet banking: Proposition and implementation of an integrated methodology approach. International Journal of Bank Marketing, 25, 72-88. DOI: 10.1108/02652320710728410

Hitt, L.M., Xue, M. & Chen, P. (2007). The determinants and outcomes of internet banking adoption. MSI Working Paper Series, 99-122.

Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions, and organizations across nations. Thousand Oaks, CA: Sage Publications.

Hua, G. (2009). An experimental investigation of online banking adoption in China. Journal of Internet Banking and Commerce, 14(1), 1-12. Retrieved from http://aisel.aisnet.org/amcis2008/36/

Jackson, C.M., Chowand S. & Leitch, R.A. (1997). Towards an understanding of the behavioral intention to use an information system. Decision Sciences, 28, 357-389. DOI: 10.1111/j.1540-5915.1997.tb01315.x

Karjaluoto, H., Mattila, M. & Pento, T. (2002). Factors underlying attitude formation towards online banking in Finland. International Journal of Bank Marketing, 20, 261-272. DOI: 10.1108/02652320210446724

44

 

Kim, H.W., Chan, H.C. & Gupta, S. (2007). Value-based adoption of mobile internet: An empirical investigation. Decision Support Systems, 43, 111-126. DOI: 10.1016/j.dss.2005.05.009

Koenig-Lewis, N., Palmer, A. & Moll, A. (2010). Predicting young consumers’ take up of mobile banking services. International Journal of Bank Marketing, 28, 410-432. DOI: 10.1108/02652321011064917

Kolodinsky, J.M., Hogarth, J.M. & Hilgert, M.A. (2004). The adoption of electronic banking technologies by US consumers. International Journal of Bank Marketing, 22, 238-259. DOI: 10.1108/02652320410542536

Konuş, U., Verhoef, P.C. & Neslin, S.A. (2008). Multichannel shopper segments and their covariates. Journal of Retailing, 84(4), 398-413. DOI: 10.1016/j.jretai.2008.09.002

Laforet, S. & Li, X. (2005). Consumers’ attitudes towards online and mobile banking in China. International Journal of Bank Marketing, 23: 362-380. DOI: 10.1108/02652320510629250 Ledden, L., Kalafatis, S.P. & Samouel, P. (2007). The relationship between personal values and perceived value of education. Journal of Business Research, 60, 965-974. DOI:

10.1016/j.jbusres.2007.01.021

Lee, M. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8, 130-141. DOI: 10.1016/j.elerap.2008.11.006

Levy, J.A. (1988). Intersections of gender and aging. Sociology Quarterly, 29, 479-486. DOI: 10.1111/j.1533-8525.1988.tb01429.x

Lewis, B.R. & Soureli, M. (2006). The antecedents of consumer loyalty in retail banking. Journal of Consumer Behaviour, 5, 15-31. DOI: 10.1002/cb.46

Li, D., Browne, G.J. & Chau, P.Y.K. (2006). An empirical investigation of web site use using a commitment-based model. Decision Sciences, 37, 427-444. DOI: 10.1111/j.1540- 5414.2006.00133.x

Liang, H., Saraf, N., Hu, Q. & Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. MIS Quarterly, 31(1), 59-87. Retrieved from http://misq.org/assimilation-of-enterprise-systems-the-effect-of- institutional-pressures-and-the-mediating-role-of-top-management.html

Lu, J., Yao, J.E. & Yu, C. (2005). Personal innovativeness, social influences and adoption of wireless internet services via mobile technology. Journal of Strategic Information Systems, 14, 245-268. DOI: 10.1016/j.jsis.2005.07.003

Luarn, P. & Lin, H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computer in Human Behavior, 21, 873-891. DOI: 10.1016/j.chb.2008.07.007

Nilsson, D. (2007). A cross-cultural comparison of self-service technology use. European Journal of Marketing, 41(3/4), 367-381. DOI: 10.1108/03090560710728381ni

Nitzl, C. & Hirsch, B. (2013). When do managers trust their management accountants? Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2127701

Park, J., Yang, S. & Lehto, X. (2007). Adoption of mobile technologies for Chinese consumers. Journal of Electronic Commerce Research, 8, 196-206. Retrieved from http://www.csulb.edu/journals/jecr/issues/20073/Paper3.pdf

Parthasarathy, M. & Bhattacherjee, A. (1998). Understanding post-adoption behavior in the context of online services. Information Systems Research, 9, 362-379. DOI: 10.1287/isre.9.4.362

Peak, H. (1955). Attitude and motivation. In M.R. Jones, (Eds.), Nebraska sympos on motivation (pp.149-188). Lincoln: University of Nebraska Press.

Podsakoff, P.M., Mackenzie, S.B., Moorman, R.H. & Fetter, R. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88, 879-903. DOI: 10.1037/0021-9010.88.5.879

45

 

Podsakoff, P.M. & Organ, D.W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12, 69-82. DOI: 10.1177/014920638601200408

Preacher, K.J. & Hayes, A.F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731. DOI: 10.3758/BF03206553

Ringle, C.M., Wende, S. & Will, A. (2005). SmartPLS (2.0 beta). Retrieved from http://smartpls.de

Riquelme, H.E. & Rios, R.E. (2010). The moderating effect of gender in the adoption of mobile banking. International Journal of Bank Marketing, 28, 328-341. DOI: 10.1108/02652321011064872

Rosenberg, M.J. (1956). Cognitive structure and attitudinal affect. Journal of Abnormal and Social Psychology, 53, 367-372. DOI:10.1037/h0044579

Safeena, R., Date, H., Hundewale, N. & Kammani, A. (2013). Combination of TAM and TPB in internet banking adoption. International Journal of Computer Theory and Engineering, 5, 146-150. DOI: 10.7763/IJCTE.2013.V5.665

Salisbury, W.D., Pearson, R.A., Pearson, A.W. & Miller, D.W. (2001). Perceived security and World Wide Web purchase intention. Industrial Management & Data Systems, 101, 165- 176. DOI: 10.1108/02635570110390071

Sawyer, A.G., Worthing, P.M., & Sendak, P.E. (1979). The role of laboratory experiments to test marketing strategies. Journal of Marketing, 43(3), 60‐67.

Sheth, J.N., Newman, B.I. and Gross, B.L. (1991). Consumption values and market choices: Theory and applications. Cincinnati, OH: South-Western Publishing.

Shih, Y. & Fang, K. (2004). The use of a decomposed theory of planned behavior to study internet banking in Taiwan. Internet Research, 14, 213-223. DOI: 10.1108/10662240410542643

Simon, F. & Usunier, J. (2007). Cognitive, demographic, and situational determinants of service customer preference for personnel-in-contact over self-service technology. International Journal of Research in Marketing, 24, 163–173. DOI: 10.1016/j.ijresmar.2006.11.004

Sirdeshmukh, D., Singh, J. & Sabol, B. (2002). Consumer trust, value, and loyalty in relational exchanges. Journal of Marketing, 66(1): 15-37. DOI: 10.1509/jmkg.66.1.15.18449

Spiller, J, Vlasic, A. & Yetton, P. (2007). Post-adoption behavior of users of internet service providers. Information & Management, 44, 513–523. DOI: 10.1016/j.im.2007.01.003

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111–147. Retrieved from http://www.stat.washington.edu/~ebfox/courses/stat527/s13/readings/Stone1974.pdf

Suh, B. & Han, I. (2002). Effect of trust on customer acceptance of internet banking. Electronic Commerce Research and Applications, 1, 247-263. DOI: 10.1016/S1567-4223(02)00017-0 Swanson, E.B. (1982). Measuring user attitudes in MIS research: A review. The International

Journal of Management Science, 10, 157-165. DOI: 10.1016/0305-0483(82)90050-0 Taylor, S. & Todd, P. (1995a). Assessing IT usage: The role of prior experience. MIS Quarterly,

19, 561-570. DOI: 10.2307/249633

Taylor, S. & Todd, P. (1995b). Decomposition and crossover effects in the theory of planned

behavior: A study of consumer adoption intentions. International Journal of Research in

Marketing, 12, 137-155. DOI: 10.1016/0167-8116(94)00019-k

Taylor, S. & Todd, P. (1995c). Understanding information technology usage: A test of

competing models. Information Systems Research, 6, 144-176. DOI: 10.1287/isre.6.2.144 Thaler, R. (1985). Mental accounting and consumer choice. Marketing Science, 4, 199-214.

Venkatesh, V. & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46, 186-204. DOI: 10.1287/mnsc.46.2.186.11926

Vroom, V.H. (1964). Work and motivation, New York, NY: Wiley.

Wan, W.W.N., Luk, C.L., & Chow, C.W.C. (2005). Customers’ adoption of banking channels

in Hong Kong. The International Journal of Bank Marketing, 23, 255–272.

Wang, H. & Yang, H. (2006). Do personality traits affect the acceptance of e-finance? International Journal of Electronic Finance, 1, 200-221. DOI: 10.1504/IJEF.2006.010316

Wessels, L. & Drennan, J. (2010). An investigation of consumer acceptance of M-banking. International Journal of Bank Marketing, 2, 547-568. DOI: 10.1108/02652321011085194

Yoon, H.S. & Steege, L.M.B. (2012). Development of a quantitative model of the impact of customers’ personality and perceptions on internet banking use. Computers in Human Behavior, 29, 1133-1141. DOI: 10.1016/j.chb.2012.10.005

Yousafzai, S. & Yani-de-Soriano, M. (2012). Understanding customer-specific factors underpinning internet banking adoption. International Journal of Bank Marketing, 30(1), 60-81. DOI: 10.1108/02652321211195703

Zeithaml, V.A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52(7), 2-22. DOI: 10.2307/1251446

Zhao, A.L., Hnmer-Lloyd, S., Ward, P. & Goode, M.M.H. (2008). Perceived risk and Chinese consumers’ internet banking services adoption. International Journal of Bank Marketing, 26, 505-525. DOI: 10.1108/02652320810913864

Zhao, A.L., Koenig-Lewis, N., Hanmer-Lloyd, S. & Ward, P. (2010). Adoption of internet banking services in China: Is it all about trust?. International Journal of Bank Marketing, 28, 7-26. DOI: 10.1108/02652321011013562

Zhu, J.J.H. & He, Z. (2002). Perceived characteristics, perceived needs, and perceived popularity adoption and use of the internet in China. Communication Research, 29, 466-495. DOI: 10.1177/0093650202029004005

Stratégies de la banque de détail face à la révolution technologique.

Olivier Klein, (2019). Stratégies de la banque de détail face à la révolution technologique. Revue d’économie financière (N° 135), pages 193 à 206

Olivier Klein directeur général de BRED, de par sa connaissance et son étude du marché bancaire actuel à su apporter une réponse sur l’avenir de nos banque de détail aujourd’hui que deviendront-elle demain avec l’arrivé des services bancaire en ligne, qui rende le client de plus en plus autonome.

 Développement :

Afin de mieux comprendre l’évolution du rôle de la banque de détail dans notre société l’auteur représente notre contexte. Il définit que l’évolution des technologie ne va pas engendrer de disparitions mais des différentiations. Le rôle de chacun des acteurs va être redéfini, et que le contact humain primera toujours dans ce contexte.

Le client à gagner en autonomie avec la gestion de ses de ses services que l’on définira exécutif de son propre chef, tel que augmenté un plafond ou faire opposition d’une carte bleue. Mais, il existe toujours la présence des banque dans nos rue.

Alors ils ne sont plus de simple exécutant mais de réel conseiller qui ont une dorénavant du temps pour mieux comprendre le besoin du client pour créer une relation qualitative et durable. Tandis que les banque en ligne ne joue seulement un rôle transactionnelle.

Conclusion :

Le développement des Fintechs sont aujourd’hui limité mais non négligé par les groupes bancaires qui innovent un peu tous les jours pour répondre aux besoins et créer de nouvelle opportunité dans l’expérience client.

Quel modèle bancaire à l’ère des FinTechs ? Scénarios prospectifs et perspective stratégique.

Jean MOUSSAVOU, Jean-Michel SAHUT, (2020). Quel modèle bancaire à l’ère des FinTechs ? Scénarios prospectifs et perspective stratégique. N°118, Management & Avenir.

Mots clés : banque, digitalisation, néobanque, fintech, innovation

La méthode de recherche est basée sur l’établissement de scénario future hypothétique. Les scénarios sont créé par l’analyse d’une étude de marché du Comité de Bâle sur le Contrôle Bancaire (CBCB), qui ont été retravailler et repensé puis sont présenter à des travailleurs du secteur bancaire afin qu’il choisissent selon la méthode Likert la probabilité du scénario prospectif pour eux le plus réaliste.

Développement :

Premièrement, les chercheurs ont utilisé une méthode pour affiner leur recherche dans l’évolution des Finctech et leur place dans le modèle bancaire actuels. Dans ce format de recherche, ils doivent soit créer de nouveaux scénarios inexistant dans les recherches antérieur, où étudié avec des scénarios déjà utilisés. Ils parviennent a agrémenter des scenarios déjà proposer par le comité de contrôle bancaire de bale (CBCB) pour déterminer de quel manière cette approche se créerait. C’est une action qui propose de multiple hypothèses selon la manière dont les Fintech collaborerait ou non avec les système bancaire dit « traditionnel).

  • Scénario 1 : La banque idéale

Les banques his- toriques pour- raient revisiter leur modèle d’affaires actuel en tirant parti des technologies digitales.

  • Scénario 2 : La banque distribuée

Les banques historiques pourraient coopérer avec les FinTechs pour propo- ser une offre de service fragmentée.

  • Scénario 3 : La banque nouvelle

Des banques « nouvelle génération » pourraient se substituer aux banques historiques.

  • Scénario 4 :La banque reléguée

Le rôle des banques historiques pourrait être réduit à celui de simples prestataires de services bancaires et financiers dont

  • Scénario 5 : La banque désintermédiée

Les banques histo- riques seraient in- capables d’évoluer et, en cela, devien- draient totalement obsolètes, à la fois comme fournisseur de services finan- ciers et comme

Deuxièmement, afin de distinguer les acteurs interviewer, la recherche nécessite de connaitre la situation professionnelle pour créer des groupes homogènes. Ils ont choisi d’interviewer 7 personnes avec de haut poste dans de grand groupe bancaire tel que BNP, BPCE, Crédit Agricole…Chacun est soumis à un entretien d’une durée 1h30 présentant les scénarios accompagner de questions ouverte.

Troisièmement, de ce processus est née la création d’un questionnaire pensé ave la méthode likert. Cela à permit de recueillir pas de 122 questionnaires exploitable.Celui-ci visait a créer l’idée central ou l’idée la plus probable : le scénario 2 « La banque distribuée ».

Conclusion :

Pour conclure, le résultat démontre que le scénario deux «La banque distribué » est devenu le scénario central de cette recherche, il est considéré comme le plus probable par les répondants.

Cela traduirait que acteurs bancaire et les Finctechs devraient s’accompagner en travaillant mutuellement sur les innovations par des partenariats. La recherche permettrait d’accomplir de nouvelle découverte dans un secteur encore en évolution afin de bâtir une nouvelle économie.

Bibliographie :

AMER M., DAIM T., JETTER A. (2013), “A review of scenario planning”, Futures, n°46, p. 23-40, February.

BARDIN L. (2013), L’Analyse de contenu, Presses Universitaires de France, Paris.

BENASSOULI P., MONTI R. (1995), « La planification par scénarios : le cas Axa France 2005 », Futuribles, n°203, p. 1-25, novembre.

BERGE A., NORRMAN C. (2008), “Incubator Best Practice : A Framework”, Technovation, Vol. 28, n°1, p. 20–28.

BLANCHET A., GOTMAN A. (2015), L’enquête et ses méthodes : L’entretien, Armand Colin, Paris.

CBCB-COMITÉ DE BÂ LE SUR LA SUPERVISION BANCAIRE (2018), “Sound Practices : Implications of Fintech developments for banks and bank super- visors”, Repéré à : https ://www.bis.org/bcbs/publ/d415.htm

CHÂLONS C., DUFFT N. (2017), “The Role of IT as an Enabler of Digital Transformation”. Dans ABOLHASSAN F. (dir.), “The Drivers of Digital Transformation”, Management for Professionals, Springer, p. 13–22.

CHERMACK T.J. (2005), “Studying scenario planning : theory, research suggestions, and hypotheses”, Technological Forecasting & Social Change, Vol. 72, p. 59-73.

CHESBROUGH H. (2006), Open Innovation : The New Imperative for Creating and Profiting from Technology, Harvard Business Press, Boston.

CHRISTENSEN C., RAYNOR M. (2013), The Innovator’s Solution : Creating and Sustaining Successful Growth, Harvard Business Revew Press, Boston.

COHEN W., LEVINTHAL D. (1989), “Innovation and Learning : The Two Faces of R&D”, The economic journal, Vol. 99, n°397, p. 569–596.

COHEN W., LEVINTHAL D. (1990), “Absorptive Capacity : A New Perspective on Learning and Innovation”, Administrative Science Quarterly, Vol. 35, n°1, p. 128–152.

DAPP T. (2015), “Fintech Reloaded – Traditional Banks as Digital Ecosystems. With Proven Walled Garden Strategies into the Future. Deutsche Bank Research”. Repéré à : https ://www.deutschebank.nl/nl/docs/ Fintech_re- loaded_Traditional_banks_as_digital_ecosystems.pdf.

DAS T., TENG B. (2001), “Trust, control, and risk in strategic alliances”, An integrated framework Organization studies, Vol. 22, n°2, p. 251–283.

DESLATTE PH. (2008), « S’inscrire dans un renouveau de la prospective eu- ropéenne et favoriser une meilleure adéquation de ses méthodes », Management & Avenir, Vol. 25, n° 19, p. 13-17.

DERBYSHIRE J. (2017), “Potential surprise theory as a theoretical foun- dation for scenario planning”, Technological Forecasting & Social Change, Vol. 124, 77-87.

DERBYSHIRE J., WRIGHT G. (2017), “Augmenting the intuitive logics scenario planning method for a more comprehensive analysis of causation”, International Journal of Forecasting, Vol. 33, n°1, p. 254-266.

DURANCE PH. (2014), La Prospective stratégique en action, Odile Jacob, Paris. DURANCE P., GODET M. (2010), “The role of scenarios in strategic fore-

sight”, Technological Forecasting & Social Change, Vol. 77, n°9, p. 1493-1498.

ECONOMIST INTELLIGENCE UNIT (2015), “Strategic Partnerships for the Digital Age”, A Telstrea report written by The Economist Intelligence Unit. Repéré à: http://connectedfuture.economist.com/wp-content/uploads/2016/10/ Connecting-Companies-Whitepaper_final.pdf

GODET M., DURANCE P. (2006), « Prospective stratégique : problèmes et méthodes », Cahier du Lipsor, CNAM, n°20, février. Repéré à : http ://www. laprospective.fr

GUEROUI F. (2016), « La conception et l’usage de la méthode des scénarios »,

HARRIGAN K. (1985), Strategies for Joint Ventures, Lexington Books, Lexington, Mass.

HATEM F. (1993), La prospective. Pratiques et méthodes, Economica, Paris. HLADIK K. (1985), International Joint Ventures : An Economic Analysis of

US-Foreign Business Partnerships, Lexington Books, Lexington, MA.

HLADIK K. (1988), « R&D and International Joint Ventures », in F. Contractor & P. Lorange (dir.), Cooperative Strategies in International Business (p. 187–204), Lexington Books, Lexington, Mass.

HUSSENOT A., DE VAUJANY F., CHANLAT J. (2016), « Théories des organisa- tions : nouveaux tournants », in F.-X. De Vaujany, A. Hussenot, J.-F. Chanlat (dir). Changements socio-économiques et théories des organisations, Economica, Paris.

JULIEN P., LAMONDE P., LATOUCHE D. (1975), « La méthode des scénarios en prospective », L’Actualité économique, Vol. 51, n°2, p. 253-281.

LAMIRAULT F. (2017), « Libre Blanc : l’évolution du modèle bancaire à l’ère du digitale (1re édition) », Repéré à : www.FabriceLamirault.com.

LAVORATA L., NILLÈS J., PONTIER S. (2004), « La méthode des scénarios : une méthode qualitative innovante pour le marketing. Application au com- portement éthique du vendeur en B2B », Décisions Marketing, n°37, p. 67-75.

LENEY T., COLES M., GROLLMAN P., VILU R. (2004), « Trousse d’outils pour la construction de scénarios », Dossier CEDEFOP, n°10, Luxembourg : Office des publications officielles des Communautés européennes.

LINCOLN Y., GUBA E. (1985), Naturalistic inquiry, Sage Publications Inc., California, USA.

LLORCA M. (2017), « Les banques aux prises avec les FinTechs », L’Économie politique, Vol. 3, n°75, p. 43-58.

MAN A., DUYSTERS G. (2005), “Collaboration and Innovation : A Review of the Effects of Mergers, Acquisitions and Alliances on Innovation”, Technovation, Vol. 25, n°12, p. 1377–1387.

MACKAY B.R., STOYANOVA V. (2017), “Scenario planning with a socio- logical eye : Augmenting the intuitive logics approach to understanding the Future of Scotland and the UK”, Technological Forecasting & Social Change, Vol. 124, p. 88-100.

MACKAY B.R., TAMBEAU P. (2013), “A structuration approach to scenario praxis”, Technological Forecasting & Social Change, Vol. 80, p. 673-686.

MCKINSEY & CO (2015), “The Fight for the Customer McKinsey Global Banking Annual Review 2015”, McKinsey & Company. Repéré dans : https :// www.alliancepartners.com/apsite/docs/McKinsey_Global_Banking_ Annual%20Review_2015_d.pdf.

MEYER V. (2008), « La méthode des scénarios : un outil d’analyse et d’ex- pertise des formes de communication dans les organisations », Etudes de communication, n°31, p. 133-156.

HUBERMAN A., MILES M. (1991), Analyse des données qualitatives, De Boeck Université, Bruxelles.

MILLET S. (2003), “The Future of Scenarios : Challenges and Opportunities”, Strategy & Leadership, Vol. 31, n°2, p. 16-24.

MINTZBERG H. (1994), Grandeur et décadence de la planification straté- gique, Dunod, Paris.

PHELPS R., CHAN C., KAPSALIS S. (2001), “Does scenario planning affect performance ? Two exploratory studies”, Journal of Business Research, Vol. 51, n°3, p. 223-232.

PISANO G., SHAN W., TEECE D. (1988), “Joint Ventures and Collaboration in Biotechnology”, in D. Mowery (dir.), International Collaborative Ventures in U.S. Manufacturing, Ballinger Publishing Company, Cambridge, Mass.

PORTER M. (1985), Competitive Advantage : Creating and Sustaining Superior, Free Press, New-York.

RAMIREZ R., MUKHERJEE M., VEZZOLI S., KRAMER A. (2015), “Scenarios as a scholarly methodology to produce ‘interesting research’”, Futures, Vol. 71, p. 70-87.

Schwartz P. (1996), The Art of the Long View. Planning for the Future in an Uncertain world, Doubleday, New-York.

SHELL INTERNATIONAL BV (2008), Scenarios : An Explorer’s Guide (Edition 2). The Hague : Shell. Repéré à : http ://s05.static-shell.com/content/dam/ shell/static/public/downloads/brochures/corporate-pkg/scenarios/explo- rers-guide.pdf.

WACHEUX F. (1996), Méthodes quantitatives et recherche en gestion, Economica, Paris.

WACK P. (1985), “Scenarios : Uncharted waters ahead”, Harvard Business Review, Vol. 63, n°5, p. 73-89.

WILKINSON A, KUPERS R. (2014), The Essence of Scenarios : Learning from the Shell Experience, Amsterdam University Press, Amsterdam.

WILKINSON A., KUPERS R., MANGALAGIU D. (2013), “How plausibi- lity-based scenario practices are grappling with complexity to appreciate and address 21st century challenges”, Technological Forecasting & Social Change, Vol. 80, p. 699-710.

WRIGHT G., BRADFIELD R., CAIRNS G. (2013), “Does the intuitive logics method – and its recent enhancements – produce ‘effective’ sce

WULF T., MEISSNER P., STUBNER S. (2010), “A scenario-based approach to strategic planning – integrating planning and process perspective of strategy”, Leipzig : HHL – Leipzig Graduate School of Management, HHL-Arbeitspapier/ HHL Working Paper ; 98. Repéré à http ://www.hhl.de/fileadmin/texte/pu- blikationen/arbeitspapiere/hhlap0098.pdf.

Drivers of continuance intention with mobile banking apps.

Peter De Maeyer, (2019) Drivers of continuance intention with mobile banking apps, International Journal of Bank Marketing.

Afin que Peter Maeyer, démontre sa théorie sur les intentions guidant l’utilisateur d’une application en ligne. Il implique est basé sur 399 personnes, précisément des thaïlandais. Puis il a croisé ces information avec des sondages déjà existant sur les clients européen, pour obtenir des résultats hétérogènes.

 Développement :

Tout d’abord, cette recherche est axé sur un pays en émergence économique. La technologie est en pleine évolution , tout comme les application bancaire en ligne.

Puis, il à émit neuf segments d’études ou dix-huit hypothèses, pour lesquels se rejoigne la satisfaction et l’intention guidé. Plusieurs facteur rentre en compte dans l’utilisation des ces application et les élément déclencheur de l’intention. Tel que l’image, la confiance, le risque perçu, le risque encourue, la qualité mais aussi la performance. Selon les paramètres le segments de la performance et de la qualité sont des moteurs de satisfaction et d’utilisation des applications. Afin de d’obtenir une courbe en croissance de l’utilisation des service bancaire en ligne, les établissent ont intérêt de créer de nouvelles approches pour les future client en s’axant sur les segments de recherche.

Conclusion :

Pour conclure, cette étude à permit de démontré le rôle de la satisfaction et de l’attente de l’utilisateur d’avoir ces tous ces capteurs qui le guide continuellement est un créateur de confiance. Cela peut être utilisé pour l’identification de segment d’amélioration pour tous ceux qui nécessite cette data afin d’évolué. Enfin, celle-ci ne concerne pas que un profil de personne particulier, mais plutôt à une classe social.

 

Bibliographie : 

Allen, D.R. and Wilburn, M. (2002), Linking Customer and Employee Satisfaction to the Bottom Line: A Comprehensive Guide to Establishing the Impact of Customer and Employee Satisfaction on Critical Business Outcomes, ASQ Quality Press, Milwaukee, WI.

Askariazad, M.H. and Babakhani, N. (2015), “An application of european customer satisfaction index (ECSI) in business to business (B2B) context”, Journal of Business & Industrial Marketing, Vol. 30 No. 1, pp. 17-31.

Ball, D., Simões Coelho, P. and Machás, A. (2004), “The role of communication and trust in explaining customer loyalty: an extension to the ECSI model”, European Journal of Marketing, Vol. 38 Nos 9/10, pp. 1272-1293.

Bangkok Post (2018), “Moody’s: digital tactics to cut costs”, Bangkok Post, February 28, p. 17.

Bank of Thailand (2017), “Statistics, use of mobile banking and internet banking”, available at: www2.bot.or.th/statistics/ReportPage.aspx?reportID=688&language=eng (accessed November 2, 2018).

Baptista, G. and Oliveira, T. (2015), “Understanding mobile banking: the unified theory of acceptance and use of technology combined with cultural moderators”, Computers in Human Behavior, Vol. 50, September, pp. 418-430, available at: www.sciencedirect.com/science/article/pii/S0 747563215003118?via%3Dihub

Bernardin, H.J. and Walter, C.S. (1977), “Effects of rater training and diary-keeping on psychometric error in ratings”, Journal of Applied Psychology, Vol. 62 No. 1, pp. 64-72.

Bhattacherjee, A. (2001a), “An empirical analysis of the antecedents of electronic commerce service continuance”, Decision Support Systems, Vol. 32 No. 2, pp. 201-214.

Bhattacherjee, A. (2001b), “Understanding information systems continuance: an expectation- confirmation model”, MIS Quarterly, Vol. 25 No. 3, pp. 351-370.

Brown, I., Zaheeda, C., Douglas, D. and Stroebel, S. (2003), “Cell phone banking: predictors of adoption in South Africa – an exploratory study”, International Journal of Information Management, Vol. 23 No. 5, pp. 381-394.

Chang, H.H., Lai, M.K. and Hsu, C.H. (2012), “Recovery of online service: perceived justice and transaction frequency”, Computers in Human Behavior, Vol. 28 No. 6, pp. 2199-2208.

Chen, R. and He, F. (2003), “Examination of brand knowledge, perceived risk and consumers’ intention to adopt an online retailer”, Total Quality Management and Business Excellence, Vol. 14 No. 6, pp. 677-693.

Chen, S.C. (2012), “To use or not to use: understanding the factors affecting continuance intention of mobile banking”, International Journal of Mobile Communications, Vol. 10 No. 5, pp. 490-507.

Chitty, B., Ward, S. and Chua, C. (2007), “An application of the ECSI model as a predictor of satisfaction and loyalty for backpacker hostels”, Marketing Intelligence & Planning, Vol. 25 No. 6, pp. 563-580.

Cooper, W.H. (1981), “Ubiquitous halo”, Psychological Bulletin, Vol. 90 No. 2, pp. 218-230.

Crosman, P. (2012), “Banks seek sticky relationship from mobile apps”, American Banker, February 6, available at: www.americanbanker.com/news/banks-seek-sticky-relationships-from-mobile-apps (accessed August 14, 2018).

Deutsch, M. (1960), “Trust, trustworthiness, and the F scale”, The Journal of Abnormal and Social Psychology, Vol. 61 No. 1, pp. 138-140.

Esposito Vinzi, V., Trinchera, L., Squillacciotti, S. and Tenenhaus, M. (2008), “REBUS-PLS: A response- based procedure for detecting unit segments in PLS path modelling”, Applied Stochastic Models in Business and Industry, Vol. 24 No. 5, pp. 439-458.

Featherman, M.S. and Pavlou, P.A. (2003), “Predicting e-services adoption: a perceived risk facets perspective”, International Journal of Human-Computer Studies, Vol. 59 No. 4, pp. 451-474.

Fang, Z. (2019), “Thailand leads mobile banking penetration”, Thailand Business News, February 13, available at: https://www.thailand-business-news.com/banking/71234-thailand-leads-mobile- banking-penetration.html (accessed May 4, 2019).

Fornell, C. (1992), “A national customer satisfaction barometer: the Swedish experience”, Journal of Marketing, Vol. 56 No. 1, pp. 6-21.

Fornell, C. and Larcker, D.F. (1981), “Evaluating structural equation models with unobservable variables and measurement error”, Journal of Marketing Research, Vol. 18 No. 1, pp. 39-50.

Fornell, C., Johnson, M.D., Anderson, E.W., Cha, J. and Bryant, B.E. (1996), “The American customer satisfaction index: nature, purpose and findings”, Journal of Marketing, Vol. 60 No. 4, pp. 7-18.

Freier, A. (2016), “Mobile banking customers drive better retention and higher revenue for institutions”, available at: www.businessofapps.com/mobile-banking-customers-drive-better-retention-and- higher-revenue-for-institutions/ (accessed August 14, 2018).

Ganesan, S. (1994), “Determinants of long-term orientation in buyer-seller relationships”, Journal of Marketing, Vol. 58 No. 2, pp. 1-19.

Hair, J.F. Jr, Hult, G.T.M., Ringle, C. and Sarstedt, M. (2016), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage Publications, Thousand Oaks, CA.

Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012), “An assessment of the use of partial least squares structural equation modeling in marketing research”, Journal of the Academy of Marketing Science, Vol. 40 No. 3, pp. 414-433.

Henseler, J., Ringle, C.M. and Sarstedt, M. (2012), “Using partial least squares path modeling in advertising research: basic concepts and recent issues”, in Okazaki, S. (Ed.), Handbook of Research on International Advertising, Edward Elgar, Cheltenham, pp. 252-276.

Heskett, J.L., Sasser, W.E. Jr and Schlesinger, L.A. (1997), The Service-Profit Chain, Free Press, New York, NY.

Hsu, S.H. (2008), “Developing an index for online customer satisfaction: adaptation of American customer satisfaction index”, Expert Systems with Applications, Vol. 34 No. 4, pp. 3033-3042.

Huang, W., Schrank, H. and Dubinsky, A.J. (2004), “Effect of brand name on consumers’ risk perceptions of online shopping”, Journal of Consumer Behaviour, Vol. 4 No. 1, pp. 40-50.

Iwamoto, K. (2019), “Southeast Asia eclipses China as world’s mobile economy hot spot”, Nikkei Asian Review, February 12, available at: https://asia.nikkei.com/Business/Business-trends/Southeast- Asia-eclipses-China-as-world-s-mobile-economy-hot-spot (accessed May 4, 2019).

Johnson, M.D., Gustafsson, A., Andreassen, T.W., Lervik, L. and Cha, J. (2001), “The evolution and future of national customer satisfaction index models”, Journal of Economic Psychology, Vol. 22 No. 2, pp. 217-245.

 

Kim, G., Shin, B.S. and Lee, H.G. (2007), “Understanding dynamics between initial trust and usage intention of mobile banking”, Information Systems Journal, Vol. 19 No. 3, pp. 283-311.

Kristensen, K., Martensen, A. and Grønholdt, L. (2000), “Customer satisfaction measurement at post Denmark: results of application of the European customer satisfaction index methodology”, Total Quality Management, Vol. 11 No. 7, pp. 1007-1015.

Kumar, G.R. and Ravindran, D.S. (2012), “An empirical study on service quality perceptions and continuance intention in Mobile banking context in India”, Journal of Internet Banking and Commerce, Vol. 17 No. 1, pp. 1-22.

Laforet, S. and Li, X. (2005), “Consumers’ attitudes towards online and mobile banking in China”, International Journal of Bank Marketing, Vol. 23 No. 5, pp. 362-380.

Lemon, K., Rust, R. and Zeithaml, V. (2001), “What drives customer equity”, Journal of Marketing Management, Vol. 10 No. 1, pp. 20-25.

Levesque, T. and McDougall, G.H.G. (1996), “Determinant of customer satisfaction in retail banking”, International Journal of Bank Marketing, Vol. 14 No. 7, pp. 12-20.

Lin, W.B. (2008), “Investigation on the model of consumers’ perceived risk-integrated viewpoint”, Expert Systems with Applications, Vol. 34 No. 2, pp. 977-988.

Luarn, P. and Lin, H. (2005), “Toward an understanding of the behavioral intention to use mobile banking”, Computers in Human Behavior, Vol. 21 No. 6, pp. 873-891.

Masayuki, Y. (2018), “Thai lenders accelerate online banking with revamped apps”, Nikkei Asian Review, November 1, available at: https://asia.nikkei.com/Business/Business-trends/Thai- lenders-accelerate-online-banking-with-revamped-apps (accessed May 4, 2019).

Morgan, R.M. and Hunt, S.D. (1994), “The commitment-trust theory of relationship marketing”, Journal of Marketing, Vol. 58 No. 3, pp. 20-38.

Newell, F. and Newell-Lemon, K. (2001), Wireless Rules, McGraw-Hill, New York, NY.

260 O’Loughlin, C. and Coenders, G. (2002), “Application of the European customer satisfaction index to postal services. structural equation models versus partial least squares”, working paper,

Department of Economics, University of Girona, Girona, September.

Ofori, K.S., Boateng, H., Okoe, A.F. and Gvozdanovic, I. (2017), “Examining customers’ continuance intention towards internet banking usage”, Marketing Intelligence & Planning, Vol. 35 No. 6, pp. 756-773.

Oliver, R. (1999), “Whence consumer loyalty?”, Journal of Marketing, Vol. 63 No. 4, pp. 33-44.

Oliver, R.L. and Swan, J.E. (1989), “Equity and disconfirmation perceptions as influences on merchant

and product satisfaction”, Journal of Consumer Research, Vol. 14 No. 3, pp. 495-507. Parasuraman, A., Zeithaml, V.A. and Berry, L.L. (1996), “The behavioral consequences of service

quality”, Journal of Marketing, Vol. 60 No. 2, pp. 31-46.

Patterson, P.G., Johnson, L.W. and Spreng, R.A. (1997), “Modeling the determinants of customer satisfaction for business-to-business professional services”, Journal of the Academy of Marketing Science, Vol. 25 No. 1, pp. 4-17.

Ranaweera, C., McDougall, G. and Bansal, H. (2005), “A model of online customer behavior during the initial transaction: moderating effects of customer characteristics”, Marketing Theory, Vol. 5 No. 1, pp. 51-74.

Roca, J.C., Chiu, C.M. and Martínez, F.J. (2006), “Understanding e-learning continuance intention: an extension of the technology acceptance model”, International Journal of Human-Computer Studies, Vol. 64 No. 8, pp. 683-696.

Rust, R.T. and Oliver, R.L. (1994), “Service quality: insights and managerial implications from the frontier”, in Rust, R.T. and Oliver, R.L. (Eds), Service Quality: New Directions in Theory and Practice, Sage, Thousand Oaks, CA, pp. 1-19.

Schaupp, L.C. and Bélanger, F. (2005), “A conjoint analysis of online consumer satisfaction”, Journal of Electronic Commerce Research, Vol. 6 No. 2, pp. 95-111.

Smith, A.K. and Bolton, R.N. (1998), “An experimental investigation of customer reactions to service failure and recovery encounters: paradox or peril?”, Journal of Service Research, Vol. 1 No. 1, pp. 65-81.

The Asian Banker (2017), “Mobile banking seen to overtake internet banking”, available at: www. theasianbanker.com/updates-and-articles/mobile-banking-seen-to-overtake-internet-banking (accessed November 28, 2017).

Thong, J.Y., Hong, S.J. and Tam, K.Y. (2006), “The effects of post-adoption beliefs on the expectation- confirmation model for information technology continuance”, International Journal of Human-Computer Studies, Vol. 64 No. 9, pp. 799-810.

Toh, T.W., Govindan, M., Chong, A.Y.-L., Keng-Boon, O. and Seetharam, A. (2009), “What drives Malaysian m-commerce adoption? An empirical analysis”, Industrial Management and Data Systems, Vol. 109 No. 3, pp. 370-388.

Verhagen, T., Meents, S. and Yao-Hua, T. (2006), “Perceived risk and trust associated with purchasing at electronic marketplaces”, European Journal of Information Systems, Vol. 15 No. 6, pp. 542-556.

Yuan, S., Liu, Y. and Yao, R. (2016), “An investigation of users’ continuance intention towards mobile banking in China”, Information Development, Vol. 32 No. 1, pp. 20-34.

Zeithaml, V.A. and Bitner, M.J. (2000), Services Marketing: Integrating Customer Focus Across the Firm, 2nd ed., McGraw-Hill, New York, NY.

Zhao, L., Lu, Y., Zhang, L. and Chau, P.Y. (2012), “Assessing the effects of service quality and justice on customer satisfaction and the continuance intention of mobile value-added services: an empirical test of a multidimensional model”, Decision Support Systems, Vol. 52 No. 3, pp. 645-656.

Zhou, T. (2013), “An empirical examination of continuance intention of mobile payment services”, Decision Support Systems, Vol. 54 No. 2, pp. 1085-1091.

Banque et nouvelles technologies : la nouvelle donne.

Oliver Klein, (2015). Banque et nouvelles technologies : la nouvelle donne, Dans Revue d’économie financière (n° 120), pages 17 à 22.

En France, nous sommes exposés comme tous les pays développés à des systèmes d’informations, de nouveaux canaux de distribution et des évolutions technologiques qui bouleversent nos traditions de manière toujours plus accélérée. Olivier Klein, directeur d’un grand groupe bancaire français nous explique sa vision de ces évolutions face à son cœur de métier.

 Développement :

Tout d’abord, les rapports entre une banque et son client ont bien évolué avec l’arrivée de l’accès à l’information immédiate dans tous les domaines. Les pouvoirs entre son conseiller et le client se sont retrouvés inversés. C’est la révolution commerciale grâce aux nouvelles technologies. Dans un secteur très concurrentiel qui se livre une guerre permanente pour attirer plus de client , les banque investissent sur la qualité du service en ligne en l’optimisant leur interface, application, services, et la rapidité.

Puis, les banques doivent répondre à de nouvelles exigences, en s’adaptant à tous les nouveaux canaux d’informations et en se réinventant pour apporter une valeur ajoutée. Les agences bancaires ont dû se réinventer, avec de nouveaux services pour promouvoir la praticité ainsi que l’efficacité des produits et services. Mais l’essentiel est de garder une certaine proximité, pour ne pas que le client se pense délaissé.

A ce sujet, cet article s’est penché sur l’accélération de la révolution numérique en se demandant s’il y avait encore de la place pour des agences bancaires physiques et en tire des conclusions positives.

Conclusion :

Enfin, malgré l’ensemble des outils à disposition, si les banques de proximité existent toujours, c’est qu’il existe toujours un besoin. Il est qualifié par la vie, car c’est un métier de relation humaine. C’est ainsi qu’un conseiller humain est indispensable pour que certains puissent présenter leur projet de vie ou d’entreprise afin d’adapter au mieux les produits bancaires.

Etude sur les modèles d’affaires des banques en ligne et des néobanques.

ACPR – Banque de France. (2018). Etude sur les modèles d’affaires des banques en ligne et des néobanques (96).

Mots clés : banque, digitalisation, néobanque, fintech, innovation

L’Autorité de Contrôle Prudentiel et de Résolution (ACPR) à mener une étude concernant les nouveaux acteurs financiers du marché tel que les banques en ligne et les néo banques. Cette étude est basé sur l’interview de 12 établissement financiers choisit selon leur notoriété et leur modèle économique

 Développement :

Voire l’immersion d’un nouveau marché financier concurrentiel en peu de temps, interpelle l’Autorité de Contrôle Prudentiel et de Résolution. L’ACPR souhaita étudié via l’interview d’une douzaine de ces acteurs du marché afin de comprendre leur modèle d’affaire, et comment de nos jours ils touchaient autant le grand public.

Ces recherches ont menés a comprendre que ces banques en ligne et néo banque permettent de gagner en part de marché aux établissement financiers dit « traditionnel ». Grâce notamment avec beaucoup d’offres d’appel afin d’attirer et familiariser le client avec ce nouveau modèle. Ces produits ont un revers pour ces nouveaux acteur qui ne sont que très peu rentable de par leur investissement dans le service clientèle, le marketing, le lancement et enfin la maintenance informatique. Mais qui ont de nombreux avantages selon d’autres points de vue tel que la fidélisation . Souvent les néo banques sont liés à des groupes bancaires classique.

 

Conclusion :

Pour conclure, le contexte des nouveaux établissement financier sont soumis à une forte concurrence. La pérennité dépend de leur axes de développement à moyen & long terme.

Mais ils sont de nos jours de bon indicateurs marketing, et permet de mieux déterminer les besoins. Cela a pour objectif de rendre le client final le plus autonome dans ses démarches, peut-être remplacé ou recréer la banque de détail.

Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking.

Tommi Laukkanen, (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking, Journal of Business Research 69 2432–243.

Mots clefs: Consumer resistance; Adoption; Rejection; Service; innovation; Internet; banking Mobile banking Logistic; regression

 Cette recherche de Tommy Lakkunen, a pour objectif d’étudier les résistances des consommateurs et de comment les surmonter face aux innovations. Il a choisi de mettre son étude en avant en choisissant le secteur de la banque mobile, et son interface son utilisation en ligne. L’étude est basée sur une enquête faite auprès de 1736 personnes en Finlande. Son analyse présente que certains facteurs comme le sexe et l’Age représente les principaux segments d’analyse. Les hommes seraient donc deux fois plus susceptibles que les femmes d’adopter les services bancaires mobiles.

 Développement :

Le chercheur nous propose une définition du contexte ainsi que celle de « l’innovation », avec un aspect théorique basée sur des études annexes. Son analyse est basée sur les réponses de clients de banque finlandaise, avec 1089 réponses de non-utilisateurs de services bancaires en ligne et 428 utilisateurs de services bancaires en ligne.

Il a émis 7 grandes hypothèses comportant chacune 3 variantes.

H1a: La barrière à l’utilisation est liée négativement à la décision des consommateurs d’adopter l’innovation bancaire mobile.

H1b: La barrière d’utilisation est liée négativement à l’intention du non-adoptant de la banque mobile d’utiliser l’innovation.

H1c: La barrière d’utilisation est liée négativement à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

H2a: La barrière de valeur est liée négativement à la décision des consommateurs d’adopter l’innovation de la banque mobile.

H2b: La barrière de valeur est liée négativement à l’intention du non-adoptant de la banque mobile d’utiliser l’innovation.

H2c: La barrière de valeur est liée négativement à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

H3a: La barrière de risque est liée négativement à la décision des consommateurs d’adopter l’innovation de la banque mobile.

H3b: La barrière de risque est liée négativement à l’intention du non-adoptant de banque mobile d’utiliser l’innovation.

H3c: La barrière de risque est liée négativement à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

H4a: La barrière de la tradition est liée négativement à la décision du consommateur d’adopter l’innovation bancaire mobile.

H4b: La barrière de la tradition est liée négativement à l’intention du non-adoptant de services bancaires mobiles d’utiliser l’innovation.

H4c: La barrière de la tradition est liée négativement à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

H5a: La barrière d’image est liée négativement à la décision du consommateur d’adopter l’innovation de la banque mobile.

H5b: La barrière d’image est liée négativement à l’intention du non-adoptant de la banque mobile d’utiliser l’innovation.

H5c: La barrière d’image est liée négativement à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

H6a: Les hommes expriment une plus grande probabilité d’adopter l’innovation bancaire mobile que les femmes.

H6b: Les non-adoptants masculins expriment une plus grande probabilité d’avoir l’intention d’utiliser les services bancaires mobiles que les femmes non-adoptants.

H6c: Les non-adoptants masculins expriment une plus grande probabilité d’avoir l’intention d’utiliser les services bancaires par Internet que les femmes non-adoptants.

H7a: L’âge est lié négativement à la décision du consommateur d’adopter l’innovation bancaire mobile.

H7b: L’âge est lié négativement à l’intention du non-adoptant de services bancaires mobiles d’utiliser l’innovation.

H7c: L’âge est négativement lié à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

H8a: Le revenu est lié positivement à la décision du consommateur d’adopter l’innovation bancaire mobile.

H8b: Le revenu est lié positivement à l’intention du non-adoptant de services bancaires mobiles d’utiliser l’innovation.

H8c: Le revenu est lié positivement à l’intention du non-adoptant de services bancaires par Internet d’utiliser l’innovation.

 

Résultat:

L’étude révèle que pour que cette innovation soit davantage présente chez tous les clients de la banque, cela nécessite davantage de communication et de promotion afin de briser cette barrière de valeur. Malgré les études antérieures ce ne sont  que l’aspect de praticité du produit qui doit être mis en avant, mais plutôt un moyen plus personnel d’entretenir une relation entre le client et la banque directement.

Le résultat des hypothèses présente que ce sont les hommes qui n’utilisent pas les services bancaires en ligne qui sont deux fois plus susceptibles que les femmes d’adopter ces services, ainsi que l’âge qui affecte le comportement ce qui en découle de l’adoption ou non des services mobiles bancaires. 

Conclusion:

Tout d’abord, cette étude a permis de déterminer que malgré les différentes analyses, il existe beaucoup de facteurs déterminants. Tel que, les comportements qui sont évolution, mais aussi selon les culture, traditions de chaque pays ainsi que l’âge et le sexe de l’utilisateur.

Enfin, cela nous permet de comprendre que les facteurs les plus déterminant aux utilisateurs des services bancaire en ligne, comme l’âge et le sexe. Et que l’utilisateur à un besoin différent, que celui mis en avant par les acteurs bancaires, comme la nécessité de créer de la proximité avec de l’utilisateur via de la communication ciblée.

 

Références bibliographiques :

Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics, and perceived vol- untariness in the acceptance of information technologies. Decision Sciences, 28(3), 557–582.

Ajzen, I. (1991). Theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

Akinci, S., Kaynak, E., Atilgan, E., & Aksoy, S. (2007). Where does the logistic regression analysis stand in marketing literature: A comparison of the market positioning of prominent marketing journals. European Journal of Marketing, 41(5/6), 537–567.

Alsajjan, B., & Dennis, C. (2010). Internet banking acceptance model: Cross-market exam- ination. Journal of Business Research, 63(9/10), 957–963.

Al-Somali, S. A., Gholami, R., & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130–141.

Antioco, M., & Kleijnen, M. (2010). Consumer adoption of technological innovations: Ef- fects of psychological and functional barriers in a lack of content versus a presence of content situation. European Journal of Marketing, 44(11/12), 1700–1724.

Bitner, M., & Brown, S. (2008). The service imperative. Business Horizons, 51, 39–46. Brown, I., Cajee, Z., Davies, D., & Stroebel, S. (2003). Cell phone banking: Predictors of adoption in South Africa — An exploratory study. International Journal of

Information Management, 23(5), 381–394.

Bruner, G. C., II, & Kumar, A. (2005). Explaining consumer acceptance of handheld inter-

net devices. Journal of Business Research, 58(5), 553–558.

Chen, C. (2013). Perceived risk, usage frequency of mobile banking services. Managing

Service Quality, 23(5), 410–436.

Cheng, T. C. E., Lam, D. Y. C., & Yeung, A. C. L. (2006). Adoption of internet banking: An empirical study in Hong Kong. Decision Support Systems, 42(3), 1558–1572.

Choi, H., Kim, Y., & Kim, J. (2011). Driving factors of post adoption behaviour in mobile

banking data services. Journal of Business Research, 64, 1212–1217.

Dabholkar, P. (1996). Consumer evaluations of new-technology-based self-service options: An investigation of alternative models of service quality. International Journal

of Research in Marketing, 13(1), 29–51.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technol-

ogy: A comparison of two theoretical models. Management Science, 35, 982–1003.

Eurostat (2014). Individuals using the Internet for Internet banking. (Retrieved from)

http://ec.europa.eu/eurostat/web/products-datasets/-/tin00099

Fain, D., & Roberts, M. L. (1997). Technology vs. consumer behavior: The battle for the fi-

nancial services customer. Journal of Direct Marketing, 11(1), 44–54.

Ferreira, J. B., da Rocha, A., & da Silva, J. F. (2014). Impacts of technology readiness on

emotions and cognition in Brazil. Journal of Business Research, 67(5), 865–873. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation model with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in internet

shopping. Journal of Business Research, 56, 867–875.

 

Gallup, T. N. S. (2012). Mobile life 2012. (Available online at URL) http://www.tnsglobal.

com/mobile-life

Garbarino, E., & Strahilevitz, M. (2004). Gender differences in the perceived risk of buying

online and the effects of receiving a site recommendation. Journal of Business

Research, 57, 768–775.

Gatignon, H., & Robertson, T. S. (1985). A propositional inventory for new diffusion re-

search. Journal of Consumer Research, 11(March), 849–867.

Gatignon, H., & Robertson, T. S. (1989). Technology diffusion: An empirical test of compet-

itive effects. Journal of Marketing, 53, 35–49.

Gilly, M., & Zeithaml, V. (1985). The elderly consumer and adoption of technologies.

Journal of Consumer Research, 12(December), 353–357.

Hanafizadeh, P., Keating, B. W., & Khedmatgozar, H. R. (2014). A systematic review of in-

ternet banking adoption. Telematics and Informatics, 31(3), 492–519.

Heidenreich, S., & Spieth, P. (2013). Why innovations fail — The case of passive and active

innovation resistance. International Journal of Innovation Management, 17(5), 1–42. Huh, Y. E., & Kim, S. H. (2008). Do early adopter upgrade early? Role of post-adoption be- havior in the purchase of next-generation products. Journal of Business Research,

61(1), 40–46.

Jayawardhena, C., & Foley, P. (2000). Changes in the banking sector — The case of internet

banking in the UK. Internet Research: Electronic Networking Applications and Policy,

10(1), 19–30.

Karjaluoto, H., Mattila, M., & Pento, T. (2002). Electronic banking in Finland: Consumer

beliefs and reactions to a new delivery channel. Journal of Financial Services

Marketing, 6(4), 346–361.

Kay, R. H. (1993). An exploration of theoretical and practical foundations for assessing at-

titudes toward computers: The computer attitude measure (CAM). Computers in

Human Behavior, 9, 371–386.

Kivijärvi, M., Laukkanen, T., & Cruz, P. (2007). Consumer trust in electronic service con-

sumption: A cross-cultural comparison between Finland and Portugal. Journal of

Euromarketing, 16(3), 51–65.

Kleijnen, M., Lee, N., & Wetzels, M. (2009). An exploration of consumer resistance to in-

novation and its antecedents. Journal of Economic Psychology, 30, 344–357.

Kuisma, T., Laukkanen, T., & Hiltunen, M. (2007). Mapping the reasons for resistance to internet banking: A means-end approach. International Journal of Information

Management, 27(2), 75–85.

Laukkanen, P., Sinkkonen, S., & Laukkanen, T. (2008). Consumer resistance to internet

banking: Postponers, opponents and rejecters. The International Journal of Bank

Marketing, 26(6), 440–455.

Laukkanen, T., & Kiviniemi, V. (2010). The role of information in mobile banking resis-

tance. The International Journal of Bank Marketing, 28(5), 372–388.

Laukkanen, T., & Lauronen, J. (2005). Consumer value creation in mobile banking services.

International Journal of Mobile Communications, 3(4), 325–338.

Pijpers, G. G. M., Bemelmans, T. M. A., Heemstra, F. J., & van Mont fort, K. A. G. M. (2001).

Senior executives use of information technology. Information and Software

Technology, 43, 959–971.

Poon, W. -C. (2008). Users’ adoption of e-banking services: The Malaysian perspective.

Journal of Business & Industrial Marketing, 23(1), 59–69.

Porter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how

attitudes determine internet usage: The role of perceived access barriers and demo-

graphics. Journal of Business Research, 59(9), 999–1007.

Ram, S. (1987). A model of innovation resistance. Advances in Consumer Research, 14(1),

208–212.

Ram, S. (1989). Successful innovation using strategies to reduce consumer resistance: An

empirical test. Journal of Product Innovation Management, 6(1), 20–34.

Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: The marketing prob-

lem and its solutions. Journal of Consumer Marketing, 6(2), 5–14.

Riquelme, H. E., & Rios, R. E. (2010). The moderating effect of gender in the adoption of

mobile banking. The International Journal of Bank Marketing, 28(5), 328–341.

Rogers, E. M. (1983). Diffusion of innovations (3rd ed.). New York: Free Press.

Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review.

Telematics and Informatics, 32(1), 129–142.

Sheth, J. N. (1981). Psychology of innovation resistance: The less developed concept

(LDC) in diffusion research. Research in Marketing, 4, 273–282.

Straub, D. W., & Burton-Jones, A. (2007). Veni, vidi, vici: Breaking the TAM logjam. Journal of the Association for Information Systems, 8(4), 223–229.

Szmigin, I., & Foxall, G. (1998). Three forms of innovation resistance: The case of retail payment methods. Technovation, 18(6/7), 459–468.

Talke, K., & Heidenreich, S. (2014). How to overcome pro-change bias: Incorporating pas- sive and active innovation resistance in innovation decision models. Journal of Product Innovation Management, 31(5), 894–907.

Teo, T. S. H., & Pok, S. H. (2003). Adoption of WAP-enabled mobile phones among internet users. Omega, 31(6), 483–498.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of informa- tion technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.

Woodside, A. G. (1996). Theory of rejecting superior new technologies. Journal of Business & Industrial Marketing, 11(3/4), 25–43.

Woodside, A. G., & Biemans, W. G. (2005). Modeling innovation, manufacturing, diffusion and adoption/rejection processes. Journal of Business & Industrial Marketing, 20(7), 380–393.

Wu, J., & Du, H. (2012). Toward a better understanding of behavioral intention and sys- tem usage constructs. European Journal of Information Systems, 21(6), 680–698.

Yiu, C. S., Grant, K., & Edgar, D. (2007). Factors affecting the adoption of internet banking

in Hong Kong: Implications for the banking sector. International Journal of Information Management, 27(5), 336–351.

 

Laukkanen, T., & Pasanen, M. (2008). Mobile banking innovators and early adopters: How they differ from other online users? Journal of Financial Services Marketing, 13(2), 86–94. Laukkanen, T., Sinkkonen, S., Kivijärvi, M., & Laukkanen, P. (2007). Innovation resistance

among mature consumers. Journal of Consumer Marketing, 24(7), 419–427. Laukkanen, T., Sinkkonen, S., & Laukkanen, P. (2009). Communication strategies to over- come functional and psychological resistance to internet banking. International

Journal of Information Management, 29(2), 111–118.

Lee, Y. -K., Park, J. -H., Chung, N., & Blakeney, A. (2012). A unified perspective on the fac-

tors influencing usage intention toward mobile financial services. Journal of Business

Research, 65(11), 1590–1599.

Lusch, R. F., & Vargo, S. L. (2006). Service-dominant logic: reactions, reflections and refinements. Marketing Theory, 6(3), 281–288.

Mann, B. J. S., & Sahni, S. K. (2012). Profiling adopter categories of internet banking in

India: An empirical study. Vision, 16(4), 283–295.

Marr, N. E., & Prendergast, G. P. (1993). Consumer adoption of self-service technologies in

retail banking: is expert opinion supported by consumer research. The International

Journal of Bank Marketing, 11(1), 3–10.

Martins, C., Oliveira, T., & Popovic, A. (2014). Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1–13.

Mattila, M., Karjaluoto, H., & Pento, T. (2003). Internet banking adoption among ma- ture customers: Early majority or laggards? Journal of Services Marketing, 17(5),

514–528.

Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal

of Business Research, 56(11), 899–906.

Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services:

Antecedents and cross-service comparisons. Journal of the Academy of Marketing

Science, 33(3), 330–343.

O’Cass, A., Song, M., & Yuan, L. (2013). Anatomy of service innovation: Introduction to the

special issue. Journal of Business Research, 66, 1060–1062.

Parasuraman, A. (2000). Technology Readiness Index (TRI): A multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307–320.

Online Customer Experience: A Review of the Business-to-Consumer Online Purchase Context.

Susan Rose,1 Neil Hair and Moira Clark, (2011).Online Customer Experience: A Review of the Business-to-Consumer Online Purchase Context, International Journal of Management Reviews, Vol. 13, 24–39.

Mot clefs: Customer, experience, behavior, web, Online.

L’expérience client réel est devenu tout aussi importante que l’expérience client en ligne. Ce nouveau mode de consommation à amener des professionnelles à étudier et innover dans ces nouveaux modes de commercialisation. Cette étude bibliographique mène à penser que le voyage du client en ligne est animé de la même manière que son expérience en magasin physique.

Développement :

Tout d’abord, la création d’internet a créé une nouvelle économie et à altéré notre modes consommation dit « traditionnel ». L’ensemble de sites marchands ont dues prouvés ont compris que l’expérience client en ligne, et tout aussi voir plus importante que l’expérience en réel. Certains professionnelles sont aujourd’hui expert sur cette nouvelle expérience.

Puis, le site internet est devenu une vitrine auquel chaque détails à son importance. Deux grand facteurs poussent de nos jours le consommateur à revenir et conseillé ce site internet. La relation cognitive et affectueuse sont primordiaux, tel un client dont on se souviendrait le nom. Les interfaces en ligne ne laissent rien au hasards pour obtenir une identité et une relation solide avec son client. La typologie, le placement des texte, l’utilisation des couleurs, la réactivité et la qualité du site internet sont devenu des éléments primordiaux pour les sites internet.

Conclusion :

Enfin, le commerçant ne peut plus négliger l’expérience client en ligne celle-ci est devenu très importante pour que la fidélité du client puissent prospérer. Ils doivent étudier et innover sur la parcours client du site, et ajuster les fonctionnalités afin que cela soit le plus simple et ludique pour le consommateur. Il nécessite d’étudier et rechercher auprès du consommateurs la compréhension de son état émotionnel et cognitif lors de son expérience client.

 

 Références bibliographiques :

 Alba, J.W. and Hutchinson, J.W. (1987). Dimensions of con- sumer expertise. Journal of Consumer Research, 13, pp. 411–454.

Algesheimer, R. and Dholakia, P.M. (2006). Do customer communities pay off? Harvard Business Review, 84, pp. 26–30.

Arnold, M.J., Reynolds, K.E., Ponder, N. and Lueg, J.E. (2005). Customer delight in a retail context: investigating delightful and terrible shopping experiences. Journal of Business Research, 58, pp. 1132–1145.

Bagozzi, R.P., Gopinath, M. and Prashanth, U.N. (1999). The role of emotions in marketing. Journal of the Academy of Marketing Science, 27, pp. 184–206.

Balasubramanian, S., Peterson, R.A. and Jarvenpaa, S.L. (2002). Exploring the implications of M-commerce for markets and marketing. Journal of the Academy of Marketing Science, 30, 348–361.

Barnes, S.J. and Vidgen, R.T. (2006). Data triangulation and web quality metrics: a case study in e-government. Information and Management, 43, pp. 767–777.

Bart, Y., Shankar, V., Sultan, F. and Urban, G.L. (2005). Are the drivers and role of online trust the same for all web sites and consumers? A large-scale exploratory empirical study. Journal of Marketing, 69, pp. 133–152.

Bauer, H.H., Hammerschmidt, M. and Falk, T. (2005). Mea- suring the quality of e-banking portals. International Journal of Bank Marketing, 23, pp. 153–175.

Bellman, S., Lohse, G.L. and Johnson, E.J. (1999). Predic- tors of online buying behavior. Communication of the ACM, 42, pp. 32–38.

Bettman, J.R. (1979). An Information Processing Theory of Consumer Choice. Reading, MA: Addison-Wesley. Bettman, J.R., Luce, M.F. and Payne, J.W. (1998). Construc- tive consumer choice processes. Journal of Consumer Research, 25, pp. 187–217.

Bhatnagar, A., Misra, S. and Rao, H.R. (2000). On risk, convenience and Internet shopping behaviour. Communications of the ACM, 43, pp. 98–105.

Bonnin, G. (2006). Physical environment and service experience: an appropriation-based model. Journal of Services Research, 6, pp. 45–65.

Brown, J.R. and Dant, R.P. (2008). On what makes a significant contribution to the retailing literature. Journal of Retailing, 84, pp. 131–135.

Brown, M., Pope, N. and Voges, N. (2003). Buying or browsing? An exploration of shopping orientations and online purchase intention. European Journal of Marketing, 37, pp. 1666–1684.

Brucks, M. (1985). The effects of product class knowledge on information search behaviour. Journal of Consumer Research, 12, pp. 1–16.

Cai, S. and Jun, M. (2003). Internet users’ perceptions of online service quality: a comparison of online buyers and information searchers. Managing Service Quality, 13, pp. 504–519.

Cao, M., Zhang, Q. and Seydel, J. (2005). B2C e-commerce web site quality: an empirical examination. Industrial Management & Data Systems, 105, pp. 645–661.

Carbone, L. and Haeckel, S. (1994). Engineering customer experiences. Marketing Management, 3, pp. 9–11.

Cases, A.-S. (2002). Perceived risk and risk-reduction strat- egies in Internet shopping. International Review of Retail, Distribution and Consumer Research, 12, pp. 375–394.

Chen, S.-J. and Chang, T.-Z. (2003). A descriptive model of online shopping process: some empirical results. Interna- tional Journal of Service Industry Management, 14, pp. 556–569.

Chen, Z. and Dubinsky, A.J. (2003). A conceptual model of perceived customer value in e-commerce: a preliminary investigation. Psychology and Marketing, 20, pp. 323– 347.

International Journal of Management Reviews © 2010 British Academy of Management and Blackwell Publishing Ltd.

Rose, N. Hair and M. Clark Cheung, C. and Lee, M.K.O. (2000). Trust in Internet shop- ping: a proposed model and measurement instrument. Paper presented at the 6th Americas Conference on Infor- mation Systems, Long Beach, USA.

Cheung, C.M.K., Chan, G.W.W. and Limayem, M. (2005). A critical review of online consumer behaviour: empirical research. Journal of Electronic Commerce in Organiza- tions, 3, pp. 1–19.

Chih-Chung, C. and Chang, S.-C. (2005). Discussion on the behavior intention model of consumer online shopping. Journal of Business and Management, 11, pp. 41–57.

Childers, T.L., Carr, C.L., Peck, J. and Carson, S. (2001). Hedonic and utilitarian motivations for online retail shop- ping behaviour. Journal of Retailing, 77, pp. 511–535.

Cho, N. and Park, S. (2001). Development of electronic commerce user–consumer satisfaction index (ECUSI) for Internet shopping. Industrial Management & Data Systems, 101, pp. 400–405.

Christodoulides, G., de Chernatony, L., Furrer, O., Shiu, E. and Abimbola, E. (2006). Conceptualising and measuring the equity of online brands. Journal of Marketing Man- agement, 22, pp. 799–825.

Corbitt, B.J., Thanasankit, T. and Yi, H. (2003). Trust and e-commerce: a study of consumer perceptions. Electronic Commerce Research and Applications, 2, pp. 203–215.

Corner, J.L., Thompson, F., Dillon, S. and Doolin, B. (2005). Perceived risk, the Internet shopping experience and online purchasing behaviour: a New Zealand perspective. Journal of Global Information Management, 13, pp. 66–88.

Coursaris, C. and Hassanein, K. (2001). Understanding M-commerce: a consumer centric model. Quarterly Journal of Electronic Commerce, 3, pp. 247–271.

Cox, D.F. (1967a). Risk handling in consumer behaviour – an intensive study of two cases. In Cox, D.F. (ed.), Risk Taking and Information Handling in Consumer Behav- iour. Boston, MA: Graduate School of Business Admin- istration, Harvard University, pp. 34–81.

Cox, D.F. (1967b). The sorting rule model of consumer product evaluation process. In Cox, D.F. (ed.), Risk Taking and Information Handling in Consumer Behaviour. Boston, MA: Graduate School of Business Administra- tion, Harvard University, pp. 317–323.

Davis, F.D. (1989). Perceived usefulness, perceived ease-of- use and user acceptance of information technology. MIS Quarterly, 13, pp. 319–340.

Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrin- sic and intrinsic motivation to use computers in the work- place. Journal of Applied Social Psychology., 22, pp. 1109–1130.

Dholakia, R.R. and Uusitalo, O. (2002). Switching to elec- tronic stores: consumer characteristics and the perception of shopping benefits. International Journal of Retail & Distribution Management, 30, pp. 459–469.

Dholakia, U.M., Bagozzi, R.P. and Pearo, L.K. (2004). A social influence model of consumer participation in network and small group-based virtual communities.

International Journal of Research in Marketing, 21, pp.

241–263.

Dillon, T.W. and Reif, H.L. (2004). Factors influencing con-

sumers’ e-commerce commodity purchases. Information Technology, Learning and Performance Journal, 22, pp. 1–12.

Dowling, G.R. and Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of Con- sumer Research, 21, pp. 119–134.

Edvardsson, B. (2005). Service quality: beyond cognitive assessment. Managing Service Quality, 15, pp. 127–131. Elliott, M.T. and Speck, P.S. (2005). Factors that affect atti- tude toward a retail web site. Journal of Marketing Theory and Practice, 13, pp. 40–50.

Eroglu, S.A., Machleit, K.A. and Davis, L.M. (2001). Atmospheric qualities of online retailing. A conceptual model and implications. Journal of Business Research, 54, pp. 177–184.

Eysenck, M.W. (1993). Principles of Cognitive Psychology. Hove: Lawrence Erlbaum Associates Ltd.

Flavián, C. and Guinalíu, M. (2005). The influence of virtual communities on distribution strategies in the internet. International Journal of Retail & Distribution Manage- ment, 33, pp. 405–425.

Frow, P. and Payne, A. (2007). Towards the ‘perfect’ cus- tomer experience. Journal of Brand Management, 15, pp. 89–101.

Geffen, D. (2003). TAM or just plain habit: a look at expe- rienced online shoppers. Journal of End User Computing, 15, pp. 1–13.

Geffen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27, pp. 51–90.

Gentile, C., Spiller, N. and Noci, G. (2007). How to sustain the customer experience: an overview of experience com- ponents that co-create value with the customer. European Management Journal, 25, pp. 395–410.

George, J.F. (2002). Influences on the intent to make Internet purchases. Internet Research, 12, pp. 165–180.

Grant, R., Clarke, R.J. and Kyriazis, E. (2007). A review of factors affecting online consumer search behaviour from an information value perspective. Journal of Marketing Management, 23, pp. 519–533.

Grewal, D., Levy, M. and Kumar, V. (2009). Customer expe- rience management in retailing: an organizing framework. Journal of Retailing, 85, pp. 1–14.

Ha, H.-Y. (2004). Factors affecting online relationships and impacts. Marketing Review, 4, pp. 189–209.

Ha, H.-Y. and Perks, H. (2005). Effects of consumer percep- tions of brand experience on the web: brand familiarity, satisfaction and brand trust. Journal of Consumer Behav- iour, 4, pp. 438–452.

Hair, N., Rose, S. and Clark, M. (2009). Using qualitative repertory grid techniques to explore perceptions of business-to-business online customer experience. Journal of Customer Behaviour, 8, pp. 51–65.

Hansen, T. (2005). Perspectives on consumer decision- making: an integrated approach. Journal of Consumer Behaviour, 4, pp. 420–437.

Hennig-Thurau, T., Gwinner, K.P., Walsh, G. and Gremler, D.D. (2004). Electronic word-of-mouth via consumer- opinion platforms: what motivates consumers to articulate themselves on the Internet? Journal of Interactive Mar- keting, 18, p. 38.

Hodkinson, C. and Kiel, G. (2003). Understanding web information search behaviour: an exploratory model. Journal of End User Computing, 15, pp. 27–48.

Holbrook, M.B. and Hirschman, E.C. (1982). The experien- tial aspects of consumption: consumer fantasies, feelings and fun. Journal of Consumer Research, 9, pp. 132–140.

Holloway, B.B., Wang, S. and Parish, J.T. (2005). The role of cumulative online purchasing experience in service recov- ery management. Journal of Interactive Marketing, 19, pp. 54–66.

Huang, W.-Y., Schrank, H. and Dubinsky, A.J. (2004). Effect of brand name on consumers’ risk perceptions of online shopping. Journal of Consumer Behaviour, 4, pp. 40–50.

Internet World Stats (2007). Retrieved from http:// www.Internetworldstats.com (accessed 14 March 2008).

Jaillet, H.F. (2002). Web metrics: measuring patterns in online shopping. Journal of Consumer Behaviour, 2, pp. 369–381.

Janda, S. and Ybarra, A. (2005). Do product and consumer characteristics affect the relationship between online experience and customer satisfaction? Journal of Internet Commerce, 4, pp. 133–151.

Jarvenpaa, S.L., Tractinsky, N. and Vitale, M. (2000). Con- sumer trust in an Internet store. Information Technology and Management, 1, pp. 45–71.

Jayawardhena, C. (2004). Personal values’ influence on e-shopping attitude and behaviour. Internet Research, 14, pp. 127–138.

Jin, B. and Park, J.Y. (2006). The moderating effect of online purchase experience on the evaluation of online store attributes and the subsequent impact on market response outcomes. Advances in Consumer Research, 33, pp. 203– 211.

Johnson, E.J., Moe, W.M., Fader, P.S., Bellman, S. and Lohse, G.L. (2004). On the depth and dynamics of online search behaviour. Management Science, 50, pp. 299–308.

Jones, M.A. (1999). Entertaining shopping experiences: an exploratory investigation. Journal of Retailing and Con- sumer Services, 6, pp. 129–139.

Kaynama, S.A. and Black, C.I. (2000). A proposal to assess the service quality of online travel agencies: an explor- atory study. Journal of Professional Services Marketing, 21, pp. 63–88.

Khalifa, M. and Liu, V. (2003). Satisfaction with Internet- based services: the role of expectations and desires. Inter- national Journal of Electronic Commerce, 7, pp. 31–49.

Khalifa, M. and Liu, V. (2007). Online consumer retention: contingent effects of online shopping habit and online shopping experience. European Journal of Information Systems, 16, 780–792.

Kim, Y. (2002). Consumer value: an application to mall and Internet shopping. International Journal of Retail & Distribution Management, 30, pp. 595–602.

Kim, H.-R. (2004). Developing an index of online customer satisfaction. Journal of Financial Services Marketing, 10, 49–64.

Kim, S. and Stoel, L. (2004). Apparel retailers: website quality, dimensions and satisfaction. Journal of Retailing and Consumer Services, 11, pp. 109–117.

Klein, L.R. and Ford, G.T. (2002). Consumer search for information in the digital age: an empirical study of pre- purchase search for automobiles. Advances in Consumer Research, 29, pp. 100–101.

Koufaris, M., Kambil, A. and LaBarbera, P.A. (2002). Con- sumer behaviour in web-based commerce: an empirical study. International Journal of Electronic Commerce, 6, pp. 115–138.

Kumar, N., Lang, K.R. and Peng, Q. (2005). Consumer search behaviour in online shopping environments. E-Service Journal, pp. 87–102.

Lee, G.-G. and Lin, H.-F. (2005). Customer perceptions of e-service quality in online shopping. International Journal of Retail & Distribution Management, 33, pp. 161–176.

Lee, H., Herr, P.M., Kardes, F.R. and Kim, C. (1999). Moti- vated search: effects of choice accountability, issue involvement and prior knowledge on information acqui- sition and use. Journal of Business Research, 45, pp. 75–88.

Lee, M.K.O. and Turban, E. (2001). A trust model for con- sumer Internet shopping. International Journal of Elec- tronic Commerce, 6, pp. 75–91.

Lee, Y.E. and Benbasat, I. (2003). Interface design for mobile commerce. Communications of the ACM, 46, pp. 48–52.

Lehto, X.Y., Kim, D.-Y. and Morrison, A.M. (2006). The effect of prior destination experience on online informa- tion search behaviour. Tourism and Hospitality Research, 6, pp. 160–178.

Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Appli- cations, 2, pp. 216–228.

Loiacono, E.T., Watson, R.T. and Goodhue, D.L. (2002). WEBQUAL: a measure of website quality. American Marketing Association. Conference Proceedings, 13, pp. 432–438.

Mathwick, C., Malhotra, N.K. and Rigdon, E. (2001). Expe- riential value: conceptualization, measurement and appli- cation in the catalog and Internet shopping environment. Journal of Retailing, 77, pp. 39–56.

Matsuda, M. (2006). Mobile communication and selective sociality. In Ito, M., Okabe, D. and Matsuda, M. (eds), Personal, Portable, Pedestrian: Mobile Phones in Japa- nese Life. Cambridge, MA: MIT Press, pp. 123–142.

International Journal of Management Reviews © 2010 British Academy of Management and Blackwell Publishing Ltd.

Rose, N. Hair and M. Clark McKnight, D.H. and Chervany, N.L. (2001). What trust means in e-commerce customer relationships: an interdis- ciplinary conceptual typology. International Journal of Electronic Commerce, 6, pp. 35–59.

Meyer, C. and Schwager, A. (2007). Understanding cus- tomer experience. Harvard Business Review, 85, pp. 116– 126.

Mitchell, V. (1999). Consumer perceived risk: conceptual- izations and models. European Journal of Marketing, 33, pp. 163–195.

Moorman, C., Zaltman, G. and Deshpandé, R. (1992). Rela- tionships between providers and users of market research: the dynamics of trust within and between organisations. Journal of Marketing Research, 29, pp. 314–329.

Morgan, R.M. and Hunt, S.D. (1994). The commitment– trust theory of relationship marketing. Journal of Market- ing, 58, pp. 20–38.

Moynagh, M. and Worsley, R. (2002). Tomorrow’s con- sumer – the shifting balance of power. Journal of Con- sumer Behaviour, 1, pp. 293–301.

Murray, K.B. and Haubl, G. (2002). The fiction of no fric- tion: a user skills approach to cognitive lock-in. Advances in Consumer Research, 29, pp. 11–18.

Novak, T.P., Hoffman, D.L. and Yung, Y.-F. (2000). Measur- ing the customer experience in online environments: a structural modelling approach. Marketing Science, 19, pp. 22–42.

Nysveen, H. and Pedersen, P.E. (2004). An exploratory study of customers’ perception of company websites offering various interactive applications: moderating effects of customers’ Internet experience. Decision Support Systems, 37, pp. 137–150.

Palen, L., Salzman, M. and Youngs, E. (2001). Discovery and integration of mobile communications in everyday life. Pesonal and Ubiquitous Computing, 5, pp. 109–122.

Parasuraman, A. and Zinkhan, G.M. (2002). Marketing to and serving customers through the Internet: an overview and research agenda. Journal of the Academy of Market- ing Science, 30, pp. 286–295.

Perea y Monsuwé, T., Dellaert, B.G.C. and de Ruyter, K. (2004). What drives consumers to shop online? A litera- ture review. International Journal of Service Industry Management, 15, pp. 102–121.

Pine, II, B.J. and Gilmore, J.H. (1999). The Experience Economy: Work Is Theatre and Every Business A Stage. Boston, MA: Harvard Business School Press.

Poynter, R. (2008). Facebook: the future of networking with customers. International Journal of Market Research, 50, pp. 11–12.

Punj, G.N. and Staelin, R. (1983). A model of consumer information search behavior for new automobiles. Journal of Consumer Research, 9, pp. 366–380.

Quan, S. and Wang, N. (2004). Towards a structural model of the tourist experience: an illustration from food expe- riences in tourism. Tourism Management, 25, pp. 297– 305.

Rodgers, W., Negash, S. and Suk, K. (2005). The moderating effect of online experience on the antecedents and conse- quences of online satisfaction. Psychology and Market- ing, 22, pp. 313–331.

Rosa, J.A. and Malter, A.J. (2003). E-(embodied) knowledge and E-commerce: How physiological factors affect online sales of experiential products. Journal of Consumer Psy- chology, 13, pp. 63–73.

Rousseau, D.M., Bitkin, S.B., Burt, R.S. and Camerer, C. (1998). Not so different after all: a cross discipline view of trust. Academy of Management Review, 23, pp. 393– 404.

Sarker, S. and Wells, J.D. (2003). Understanding mobile handheld device use and adoption. Communications of the ACM, 46, pp. 35–40.

Schmitt, B.H. (2003). Customer Experience Management: A Revolutionary Approach to Connecting with Your Cus- tomer. Hoboken NJ: John Wiley.

Shaw, C. (2002). The DNA of Customer Experience – How Emotions Drive Value. New York: Palgrave.

Shchiglik, C. and Barnes, S.J. (2004). Evaluating website quality in the airline industry. Journal of Computer Infor- mation Systems, 44, pp. 17–25.

Shim, S., Eastlick, M.A., Lotz, S.L. and Warrington, P. (2001). An online pre-purchase intentions model: the role of intention to search. Journal of Retailing, 77, pp. 397– 416.

Shiv, B. and Fedorikhin, A. (1999). Heart and mind in con- flict. The interplay of affect and cognition in consumer decision-making. Journal of Consumer Research, 26, pp. 278–292.

So, W.C.M., Wong, T.N.D. and Sculli, D. (2005). Factors affecting intentions to purchase via the Internet. Indus- trial Management & Data Systems, 105, pp. 1225–1244.

Stewart, K.J. (1999). Transference as a means of building trust in world wide web sites. Proceedings of the 20th International Conference on Information Systems, 1999 pp. 459–464.

Suh, B. and Han, I. (2003). The impact of customer trust and perception of security control on the acceptance of elec- tronic commerce. International Journal of Electronic Commerce, 7, pp. 135–161.

Summers, J.O. (2001). Guidelines for conducting research and publishing in Marketing: from conceptualization through the review process. Journal of the Academy of Marketing Science, 29, pp. 405–401.

Tan, F.B. and Sutherland, P. (2004). Online consumer trust: a multi-dimensional model. Journal of Electronic Com- merce in Organizations, 2, pp. 41–59.

Teo, T.S.H. (2002). Attitudes toward online shopping and the Internet. Behaviour & Information Technology, 21, pp. 259–271.

Trabold, L.M., Heim, G.R. and Field, J.M. (2006). Compar- ing e-service performance across industry sectors. Inter- national Journal of Retail & Distribution Management, 34, pp. 240–257.

Tranfield, D., Denyer, D. and Smart, P. (2003). Towards a methodology for developing evidence-informed manage- ment knowledge by means of systematic review. British Journal of Management, 14, pp. 207–222.

Trevino, L.K. and Webster, J. (1992). Flow in computer- mediated computer communication: electronic mail and voice mail evaluation and impacts. Communication Research, 19, pp. 539–573.

Tsai, S.-P. (2005). Integrated marketing as management of holistic consumer experience. Business Horizons, 8, pp. 431–441.

US Census Bureau (2009). Wholesale and retail trading: online retail sales. Available at http://www.census.gov/ compendia/statab/cats/wholesale_retail_trade/ online_retail_sales.html (accessed 13 November 2009).

van der Heijden, H., Verhagen, T. and Creemers, M. (2003). Understanding online purchase intentions: contributions from technology and trust perspectives. European Journal of Information Systems, 12, pp. 41–48.

Varshney, U. and Vetter, R. (2002). Mobile commerce: framework, applications and networking support. Mobile Networks and Applications, 7, pp. 185–198.

Vijayasarathy, L.R. and Jones, J.M. (2000). Print and Inter- net catalog shopping: assessing attitudes and intentions. Internet Research, 10, pp. 191–200.

Watson, R.T., Akselsen, S. and Pitt, L.F. (1998). Attractors: building mountains in the flat landscape of the world wide web. California Management Review, 40, pp. 36–56.

Wolfinbarger, M. and Gilly, M.C. (2001). Shopping online for freedom, control and fun. California Management Review, 43, pp. 34–55.

Wood, C.M. and Scheer, L.K. (1996). Incorporating per- ceived risk into models of consumer deal assessment and purchased intention. Advances in Consumer Research, 23, pp. 399–404.

Zeng, M. and Reinartz, W. (2003). Beyond online search: the road to profitability. California Management Review, 45, pp. 107–130.

How do electronic word of mouth practices contribute to mobile banking adoption ?

Amit Shankara, Charles Jebarajakirthyb, Md Ashaduzzamanb, (2020), How do electronic word of mouth practices contribute to mobile banking adoption ? Journal of Retailing and Consumer Services.

Mot clefs : Mobile banking ;Electronic ; word of mouth ; Elaboration likelihood model ; Moderated mediation ;Initial trust.

 Amit Shankara, Charles Jebarajakirthyb et Md Ashaduzzamanb demontrent l’importance du “electronic word-of-mouth” soit l’équivalent du « bouche à oreille électronique » dans le secteur du commerce en ligne. Ce processus fait référence à une recommandation orale ou écrite d’un client satisfait à d’autres clients potentiels.Le secteur du service bancaire mobile est mis en avant dans cette étude, du fait que nous sommes dans un ère ou le service en ligne connait un croissance d’autant plus accrue ces dernières années, mais il est aussi un des modèles les plus rentable.

Développement :

L’objectif principal de cette étude est d’analyser le mécanisme de médiation pour améliorer le comportement d’adoption de la banque mobile. Bien que l’influence des déclencheurs eWOM sur l’intention d’achat ou d’adoption ait été étudiée dans le contexte d’autres produits ou services, la littérature ne montre pas comment les déclencheurs eWOM positifs affectent l’intention d’adoption par l’achat ou l’adoption. L’ensemble des données analysées est basé sur un total de 1153 enquêtes. Ce type d’échange d’informations de personne à personne affecte la prise de décision des consommateurs et met en lumière l’importance de la stratégie marketing pour motiver les individus à avoir confiance et à se fidéliser à ces services en ligne. En effet, le WOM a un meilleur impact sur les ventes de produits et la crédibilité des services car il est personnel et authentique,  et fourni par les personnes qui ont utilisé le produit ou le service.

En ce sens, avec l’avènement d’Internet, le bouche à oreille est devenu un sujet considérable ces dernières années. Les principes de base comme la qualité du service induite par une facilité de gestion de ses activités financières en ligne, sans contraintes de temps et de lieu notamment, le prix, la sécurité et la confiance (facteurs techniques principaux), la cohérence sont considérés comme des variables ayant une relation directe les unes entre elles, qui déclenchent le WOM.

 Conclusion :

Les résultats ont montré que parmi les déclencheurs eWOM, les arguments de qualité, de puissance et de cohérence augmentent considérablement la volonté d’adopter la banque mobile en ligne. La confiance initiale sert d’intermédiaire entre ces déclencheurs eWOM et l’intention d’adopter les services bancaires mobiles.

Cette étude fournit des suggestions aux banques sur la manière d’utiliser l’eWOM actif pour motiver les consommateurs à adopter les services bancaires mobiles.

 

Références bibliographiques

Aboelmaged, M., Gebba, T.R., 2013. Mobile banking adoption: an examination of tech- nology acceptance model and theory of planned behavior. Int. J. Biol. Res. Dev. 2 (1), 35–50.

Amed, I., Berg, A., Brantberg, L., Hedrich, S., Leon, J., Young, R., 2017. The State of Fashion 2017, New York.

Akturan, U., Tezcan, N., 2012. Mobile banking adoption of the youth market: perceptions and intentions. Market. Intell. Plan. 30 (4), 444–459.

Alalwan, A.A., Dwivedi, Y.K., Rana, N.P., 2017. Factors influencing adoption of mobile banking by Jordanian bank customers: extending UTAUT2 with trust. Int. J. Inf. Manag. 37 (3), 99–110.

Augusto, M., Torres, P., 2018. Effects of brand attitude and eWOM on consumers’ will- ingness to pay in the banking industry: mediating role of consumer-brand identifi- cation and brand equity. J. Retail. Consum. Serv. 42, 1–10.

Berezina, K., Bilgihan, A., Cobanoglu, C., Okumus, F., 2016. Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews. J. Hosp. Mark. Manag. 25 (1), 1–24.

Bhattacherjee, A., Sanford, C., 2006. Influence processes for information technology ac- ceptance: an elaboration likelihood model. MIS Q. 30 (4), 805–825.

Byrne, B.M., 2009. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 2nd ed. Taylor & Francis, New York, NY.

Bronner, F., de Hoog, R., 2016. Travel websites: changing visits, evaluations and posts. Ann. Tourism Res. 57, 94–112.

Bryman, A., 2012. Social Research Methods, fourth ed. Oxford University Press, New York.

Burns, A.C., Bush, R.F., 2003. Marketing Research, fourth ed. Pearson Education, Upper

Saddle River, NJ.

Canhoto, A.I., Clark, M., 2013. Customer service 140 characters at a time: the users’

perspective. J. Mark. Manag. 29 (5–6), 522–544.

Chan, Y.Y., Ngai, E.W., 2011. Conceptualising electronic word of mouth activity: an

input-process-output perspective. Market. Intell. Plan. 29 (5), 488–516.

Chaouali, W., Souiden, N., 2019. The role of cognitive age in explaining mobile banking

resistance among elderly people. J. Retail. Consum. Serv. 50, 342–350.

Cheah, C.M., Teo, A.C., Sim, J.J., Oon, K.H., Tan, B.I., 2011. Factors affecting Malaysian mobile banking adoption: an empirical analysis. Int. J. Network Mob. Technol. 2 (3),

149–160.

Chemingui, H., Ben lallouna, H., 2013. Resistance, motivations, trust and intention to use

mobile financial services. Int. J. Bank Mark. 31 (7), 574–592.

Chen, P.Y., Wu, S.Y., Yoon, J., 2004. The impact of online recommendations and con-

sumer feedback on sales. In: ICIS 2004 Proceedings, pp. 711–724.

Chen, J., Teng, L., Yu, Y., Yu, X., 2016. The effect of online information sources on purchase intentions between consumers with high and low susceptibility to in-

formational influence. J. Bus. Res. 69 (2), 467–475.

Cheung, C.M., Lee, M.K., 2012. What drives consumers to spread electronic word of

mouth in online consumer-opinion platforms. Decis. Support Syst. 53 (1), 218–225. Cheung, C.M., Thadani, D.R., 2012. The impact of electronic word-of-mouth commu- nication: a literature analysis and integrative model. Decis. Support Syst. 54 (1),

461–470.

Cheung, C.M., Lee, M.K., Thadani, D.R., 2009. The impact of positive electronic word-of-

mouth on consumer online purchasing decision. In: World Summit on Knowledge

Society, pp. 501–510.

Chevalier, J.A., Mayzlin, D., 2006. The effect of word of mouth on sales: online book

reviews. J. Mark. Res. 43 (3), 345–354.

Cheung, G.W., Lau, R.S., 2008. Testing mediation and suppression effects of latent var-

iables:bootstrapping with structural equation models. Organ. Res. Methods 11 (2),

296–325.

Chu, S.C., Kim, Y., 2011. Determinants of consumer engagement in electronic word-of-

mouth (eWOM) in social networking sites. Int. J. Advert. 30 (1), 47–75. Dellarocas, C., Zhang, X.M., Awad, N.F., 2007. Exploring the value of online product

reviews in forecasting sales: the case of motion pictures. J. Interact. Mark. 21 (4),

23–45.

Delone, W.H., McLean, E.R., 2003. The DeLone and McLean model of information systems

success: a ten-year update. J. Manag. Inf. Syst. 19 (4), 9–30.

Deutskens, E., De Ruyter, K., Wetzels, M., 2006. An assessment of equivalence between

online and mail surveys in service research. J. Serv. Res. 8 (4), 346–355. Dichter, E., 1966. How word-of-mouth advertising works. Harv. Bus. Rev. 44 (6),

147–160.

Doh, S.J., Hwang, J.S., 2009. How consumers evaluate eWOM (electronic word-of-mouth)

messages. Cyberpsychol. Behav. 12 (2), 193–197.

Duan, W., Gu, B., Whinston, A.B., 2008. Do online reviews matter?-An empirical in-

vestigation of panel data. Decis. Support Syst. 45 (4), 1007–1016.

Duffy, B., Smith, K., Terhanian, G., Bremer, J., 2005. Comparing data from online and

face-to-face surveys. Int. J. Mark. Res. 47 (6), 615–639.

Eagly, A.H., Chaiken, S., 1993. The Psychology of Attitudes. Harcourt Brace Jovanovich

College Publishers, Orlando, FL, US.

Erkan, I., Evans, C., 2016. The influence of eWOM in social media on consumers’ purchase

intentions: an extended approach to information adoption. Comput. Hum. Behav. 61,

47–55.

Filieri, R., McLeay, F., 2014. E-WOM and accommodation: an analysis of the factors that

influence travelers’ adoption of information from online reviews. J. Travel Res. 53

(1), 44–57.

Floyd, K., Freling, R., Alhoqail, S., Cho, H.Y., Freling, T., 2014. How online product re-

views affect retail sales: A meta-analysis. J. Retail. 90 (2), 217–232.

Fornell, C., Larcker, D.F., 1981. Evaluating structural equation models with unobservable

variables and measurement error. J. Mark. Res. 18 (1), 39–50.

Giovanis, A., Athanasopoulou, P., Assimakopoulos, C., Sarmaniotis, C., 2019. Adoption of

mobile banking services: a comparative analysis of four competing theoretical

models. Int. J. Bank Mark. 37 (5), 1165–1189.

Glavee-Geo, R., Shaikh, A.A., Karjaluoto, H., 2017. Mobile banking services adoption in

Pakistan: are there gender differences? Int. J. Bank Mark. 35 (7), 1090–1114. Gopinath, S., Thomas, J.S., Krishnamurthi, L., 2014. Investigating the relationship be- tween the content of online word of mouth, advertising, and brand performance.

Mark. Sci. 33 (2), 241–258.

Hair, J.F., Anderson, R.E., Babin, B.J., Black, W.C., 2010. Multivariate Data Analysis: A

Global Perspective, vol. 7 Pearson Education, Upper Saddle River, NJ.

Hayes, A.F., 2012. PROCESS: a versatile computational tool for observed variable med-

iation, moderation, and conditional process modeling. White paper. http://www.

afhayes.com/public/process2012.pdf.

Hennig-Thurau, T., Gwinner, K.P., Walsh, G., Gremler, D.D., 2004. Electronic word‐of‐-

mouth via consumer‐opinion platforms: what motivates consumers to articulate

themselves on the internet? J. Interact. Mark. 18 (1), 38–52.

Herold, K., Tarkiainen, A., Sundqvist, S., 2016. How the source of word-of-mouth influ-

ences information processing in the formation of brand attitudes. J. Mark. High.

Educ. 26 (1), 64–85.

Jebarajakirthy, C., Lobo, A., Hewege, C., 2015. Enhancing youth’s attitudes towards

microcredit in the bottom of the pyramid markets. Int. J. Consum. Stud. 39 (2),

180–192.

Junglas, I., Watson, R.T., 2006. The u-constructs: four information drives. Commun.

Assoc. Inf. Syst. 17 (1), 569–592.

Juniper Research, 2013. Mobile banking handset and tablet market strategies 2013–2017.

http://www.juniperresearch.com/reports/mobile_banking.

Kalinic, Z., Marinkovic, V., Molinillo, S., Liébana-Cabanillas, F., 2019. A multi-analytical

12

  1. Shankar, et al.

Journal of Retailing and Consumer Services 52 (2020) 101920

approach to peer-to-peer mobile payment acceptance prediction. J. Retail. Consum.

Serv. 49, 143–153.

Kim, D.J., Ferrin, D.L., Rao, H.R., 2009. Trust and satisfaction, two stepping stones for

successful e-commerce relationships: a longitudinal exploration. Inf. Syst. Res. 20 (2),

237–257.

Kim, W.G., Lim, H., Brymer, R.A., 2015. The effectiveness of managing social media on

hotel performance. Int. J. Hosp. Manag. 44, 165–171.

Ko, E., Kim, E.Y., Lee, E.K., 2009. Modeling consumer adoption of mobile shopping for

fashion products in Korea. Psychol. Mark. 26 (7), 669–687.

Koenig-Lewis, N., Palmer, A., Moll, A., 2010. Predicting young consumers’ take up of

mobile banking services. Int. J. Bank Mark. 28 (5), 410–432.

Koksal, M.H., 2016. The intentions of Lebanese consumers to adopt mobile banking. Int.

  1. Bank Mark. 34 (3), 327–346.

Krishnamurthy, A., Kumar, S.R., 2018. Electronic word-of-mouth and the brand image:

exploring the moderating role of involvement through a consumer expectations lens.

  1. Retail. Consum. Serv. 43, 149–156.

Kudeshia, C., Kumar, A., 2017. Social eWOM: does it affect the brand attitude and pur-

chase intention of brands? Manag. Res. Rev. 40 (3), 310–330.

Ladhari, R., Michaud, M., 2015. eWOM effects on hotel booking intentions, attitudes,

trust, and website perceptions. Int. J. Hosp. Manag. 46, 36–45.

Laukkanen, T., 2016. Consumer adoption versus rejection decisions in seemingly similar service innovations: the case of the Internet and mobile banking. J. Bus. Res. 69 (7),

2432–2439.

Lee, S.H., 2009. How do online reviews affect purchasing intention? Afr. J. Bus. Manag. 3

(10), 576–581.

Lee, K.C., Chung, N., 2009. Understanding factors affecting trust in and satisfaction with

mobile banking in Korea: a modified DeLone and McLean’s model perspective.

Interact. Comput. 21 (5–6), 385–392.

Lee, J., Lee, J.N., 2009. Understanding the product information inference process in

electronic word-of-mouth: an objectivity–subjectivity dichotomy perspective. Inf.

Manag. 46 (5), 302–311.

Lee, M., Youn, S., 2009. Electronic word of mouth (eWOM) How eWOM platforms in-

fluence consumer product judgement. Int. J. Advert. 28 (3), 473–499.

Lee, J., Park, D.H., Han, I., 2008. The effect of negative online consumer reviews on

product attitude: an information processing view. Electron. Commer. Res. Appl. 7 (3),

341–352.

Lee, M., Rodgers, S., Kim, M., 2009. Effects of valence and extremity of eWOM on attitude

toward the brand and website. J. Curr. Issues Res. Advert. 31 (2), 1–11.

Li, X., Hitt, L.M., 2008. Self-selection and information role of online product reviews. Inf.

Syst. Res. 19 (4), 456–474.

Liao, Z., Shi, X., 2017. Web functionality, web content, information security, and online

tourism service continuance. J. Retail. Consum. Serv. 39, 258–263.

Lin, H.F., 2011. An empirical investigation of mobile banking adoption: the effect of

innovation attributes and knowledge-based trust. Int. J. Inf. Manag. 31 (3), 252–260. Liu, Y., 2006. Word of mouth for movies: its dynamics and impact on box office revenue.

  1. Mark. 70 (3), 74–89.

Liu, C., Arnett, K.P., 2000. Exploring the factors associated with Web site success in the

context of electronic commerce. Inf. Manag. 38 (1), 23–33.

Luo, Q., Zhong, D., 2015. Using social network analysis to explain communication

characteristics of travel-related electronic word-of-mouth on social networking sites.

Tour. Manag. 46, 274–282.

Luo, X., Li, H., Zhang, J., Shim, J.P., 2010. Examining multi-dimensional trust and multi-

faceted risk in initial acceptance of emerging technologies: an empirical study of

mobile banking services. Decis. Support Syst. 49 (2), 222–234.

Malhotra, N.K., Kim, S.S., Patil, A., 2006. Common method variance in IS research: a

comparison of alternative approaches and a reanalysis of past research. Manag. Sci.

52 (12), 1865–1883.

Mallat, N., Rossi, M., Tuunainen, V.K., 2004. Mobile banking services. Commun. ACM 47

(5), 42–46.

Matute, J., Polo-Redondo, Y., Utrillas, A., 2016. The influence of EWOM characteristics

on online repurchase intention: mediating roles of trust and perceived usefulness.

Online Inf. Rev. 40 (7), 1090–1110.

Mills, L.A., Knezek, G., Khaddage, F., 2014. Information Seeking, Information Sharing,

and going mobile: three bridges to informal learning. Comput. Hum. Behav. 32,

324–334.

Mullan, J., Bradley, L., Loane, S., 2017. Bank adoption of mobile banking: stakeholder

perspective. Int. J. Bank Mark. 35 (7), 1154–1174.

Mo Kwon, J., Bae, J.I., Blum, S.C., 2013. Mobile applications in the hospitality industry. J.

Hospit. Tourism Technol. 4 (1), 81–92.

Mortazavi, M., Rahim Esfidani, M., Shaemi Barzoki, A., 2014. Influencing VSN users’

purchase intentions: the roles of flow, trust and eWOM. J. Res. Indian Med. 8 (2),

102–123.

Moser, F., 2015. Mobile banking: a fashionable concept or an institutionalized channel in

future retail banking? Analyzing patterns in the practical and academic mobile

banking literature. Int. J. Bank Mark. 33 (2), 162–177.

Muller, D., Judd, C.M., Yzerbyt, V.Y., 2005. When moderation is mediated and mediation

is moderated. J. Personal. Soc. Psychol. 89 (6), 852–863.

Muskat, M., Muskat, B., Zehrer, A., Johns, R., 2013. Generation Y: evaluating services

experiences through mobile ethnography. Tour. Rev. 68 (3), 55–71.

Park, D.H., Lee, J., 2008. eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electron. Commer. Res. Appl. 7 (4), 386–398. Park, C., Lee, T.M., 2009. Information direction, website reputation and eWOM effect: a

moderating role of product type. J. Bus. Res. 62 (1), 61–67.

Park, D.H., Lee, J., Han, I., 2007. The effect of on-line consumer reviews on consumer

purchasing intention: the moderating role of involvement. Int. J. Electron. Commer. 11 (4), 125–148.

Petty, R.E., Cacioppo, J.T., 1983. Central and peripheral routes to persuasion: application to advertising. Advert. Consum. Psychol. 1, 3–23.

Petty, R.E., Cacioppo, J.T., 1984. The effects of involvement on responses to argument quantity and quality: central and peripheral routes to persuasion. J. Personal. Soc. Psychol. 46 (1), 69–81.

Petty, R.E., Cacioppo, J.T., 1986. The elaboration likelihood model of persuasion. In: Communication and Persuasion. Springer, New York.

Pitta, D.A., Fowler, D., 2005. Online consumer communities and their value to new product developers. J. Prod. Brand Manag. 14 (5), 283–291.

Podsakoff, P.M., Organ, D.W., 1986. Self-reports in organizational research: problems and prospects. J. Manag. 12 (4), 531–544.

Preacher, K.J., Rucker, D.D., Hayes, A.F., 2007. Addressing moderated mediation hy- potheses: theory, methods, and prescriptions. Multivar. Behav. Res. 42 (1), 185–227.

Premazzi, K., 2010. Trust in online customer-firm interaction: a literature review and directions for research. Int. J. Electron. Commer. 14, 63–91.

Premazzi, K., Castaldo, S., Grosso, M., Raman, P., Brudvig, S., Hofacker, C.F., 2010. Customer information sharing with e-vendors: the roles of incentives and trust. Int. J. Electron. Commer. 14 (3), 63–91.

Richins, M.L., 1983. Negative word-of-mouth by dissatisfied consumers: a pilot study. J. Mark. 47 (1), 68–78.

Robson, C., 2011. Real World Research, third ed. Wiley, UK.

Roy, G., Datta, B., Basu, R., 2017. Effect of eWOM valence on online retail sales. Glob.

Bus. Rev. 18 (1), 198–209.

Ruiz-Mafe, C., Chatzipanagiotou, K., Curras-Perez, R., 2018. The role of emotions and

conflicting online reviews on consumers’ purchase Intentions. J. Bus. Res. 89,

336–344.

Saunders, M., Lewis, P., Thornhill, A., 2009. Research Methods for Business Students.

Pearson education, Essex.

See-To, E.W., Ho, K.K., 2014. Value co-creation and purchase intention in social network

sites: the role of electronic Word-of-Mouth and trust–A theoretical analysis. Comput.

Hum. Behav. 31, 182–189.

Sen, S., Lerman, D., 2007. Why are you telling me this? An examination into negative

consumer reviews on the web. J. Interact. Mark. 21 (4), 76–94.

Shaikh, A.A., Karjaluoto, H., 2015. Mobile banking adoption: a literature review.

Telematics Inf. 32 (1), 129–142.

Shankar, A., Jebarajakirthy, C., 2019. The influence of e-banking service quality on

customer loyalty: a moderated mediation approach. Int. J. Bank Mark. 37 (5),

1119–1142.

Shankar, A., Kumari, P., 2016. Factors affecting mobile banking adoption behavior in

India. J. Internet Bank. Commer. 21 (1), 1–24.

Shareef, M.A., Baabdullah, A., Dutta, S., Kumar, V., Dwivedi, Y.K., 2018. Consumer

adoption of mobile banking services: an empirical examination of factors according

to adoption stages. J. Retail. Consum. Serv. 43, 54–67.

Singh, S., Srivastava, R.K., 2018. Predicting the intention to use mobile banking in India.

Int. J. Bank Mark. 36 (2), 357–378.

Sigala, M., Evangelos, C., Ulrike, G., 2012. Social Media in Travel, Tourism and

Hospitality: Theory, Practice and Cases. Ashgate, UK.

Soares, A.M., Pinho, J.C., Nobre, H., 2012. From social to marketing interactions: the role

of social networks. J. Transnatl. Manag. 17 (1), 45–62.

Sreejesh, S., Anusree, M.R., Mitra, A., 2016. Effect of information content and form on

customers’ attitude and transaction intention in mobile banking Moderating role of

perceived privacy concern. Int. J. Bank Mark. 34 (7), 1092–1113.

Schneider, B., Ehrhart, M.G., Mayer, D.M., Saltz, J.L., Niles-Jolly, K., 2005. Understanding organization-customer links in service settings. Acad. Manag. J. 48 (6), 1017–1032. Steffes, E.M., Burgee, L.E., 2009. Social ties and online word of mouth. Internet Res. 19

(1), 42–59.

Stewart, D., 2009. Say hello to mobile banking. ABA Bank. Mark. 41 (5), 16–23. Tabachnick, B.G., Fidell, L.S., 2012. Using Multivariate Statistics, sixth ed. Pearson

Education, New York.

Tam, C., Oliveira, T., 2016. Understanding the impact of m-banking on individual per-

formance: DeLone & McLean and TTF perspective. Comput. Hum. Behav. 61,

233–244.

Teng, S., Wei Khong, K., Wei Goh, W., Yee Loong Chong, A., 2014. Examining the

antecedents of persuasive eWOM messages in social media. Online Inf. Rev. 38 (6),

746–768.

The State of Broadband, 2016. Broadband Catalyzing Sustainable Development. http://

www.broadbandcommission.org/Documents/reports/bb-annualreport2016.pdf,

Accessed date: 12 March 2018.

Tran, H.T.T., Corner, J., 2016. The impact of communication channels on mobile banking adoption. Int. J. Bank Mark. 34 (1), 78–109.

Wang, R.Y., Strong, D.M., 1996. Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12 (4), 5–33.

Woodside, A.G., 2013. Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. J. Bus. Res. 66 (4), 463–472.

Weisstein, F.L., Song, L., Andersen, P., Zhu, Y., 2017. Examining impacts of negative reviews and purchase goals on consumer purchase decision. J. Retail. Consum. Serv. 39, 201–207.

Wessels, L., Drennan, J., 2010. An investigation of consumer acceptance of M-banking. Int. J. Bank Mark. 28 (7), 547–568.

Yang, S., 2016. Role of transfer-based and performance-based cues on initial trust in mobile shopping services: a cross-environment perspective. Inf. Syst. E Bus. Manag. 14 (1), 47–70.

Yang, K., Li, X., Kim, H., Kim, Y.H., 2015. Social shopping website quality attributes increasing consumer participation, positive eWOM, and co-shopping: the re- ciprocating role of participation. J. Retail. Consum. Serv. 24, 1–9.

Yin, D., Mitra, S., Zhang, H., 2016. Research note-When do consumers value positive vs. negative reviews? An empirical investigation of confirmation bias in online word of mouth. Inf. Syst. Res. 27 (1), 131–144.

Yu, C.S., 2012. Factors affecting individuals to adopt mobile banking: empirical evidence from the UTAUT model. J. Electron. Commer. Res. 13 (2), 104–121.

Zhang, J.Q., Craciun, G., Shin, D., 2010. When does electronic word-of-mouth matter? A study of consumer product reviews. J. Bus. Res. 63 (12), 1336–1341.

Zhang, L., Wu, L., Mattila, A.S., 2016. Online reviews: the role of information load and peripheral factors. J. Travel Res. 55 (3), 299–310.

Zhang, T., Abound Omran, B., Cobanoglu, C., 2017. Generation Y’s positive and negative eWOM: use of social media and mobile technology. Int. J. Contemp. Hosp. Manag. 29 (2), 732–761.

Zhou, T., 2012. Understanding users’ initial trust in mobile banking: an elaboration likelihood perspective. Comput. Hum. Behav. 28 (4), 1518–1525.

Zhang, Y., 1996. Chinese consumers’ evaluation of foreign products: the influence of culture, product types and product presentation format. Eur. J. Market. 30 (12), 50–68.

Zhou, T., Lu, Y., Wang, B., 2010. Integrating TTF and UTAUT to explain mobile banking user adoption. Comput. Hum. Behav. 26 (4), 760–767.

Zhu, F., Zhang, X., 2010. Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics. J. Mark. 74 (2), 133–148.