Influence of consumer reviews on online purchasing decisions in older and younger adults

Helversen B, Abramczuk K, Kopeć W, Nielek R, (2018), Influence of consumer reviews on online purchasing decisions in older and younger adults, Decision Support Systems

Volume 113, September 2018, Pages 1-10

Mots clés : Prise de décision des consommateurs, Adultes, Évaluations des consommateurs, Avis des consommateurs, Preuves anecdotiques

Résumé : Cet article montre que les attributs des produits, les notes moyennes des consommateurs et les avis de consommateurs positifs ou négatifs riches en effets ont influencé les décisions d’achat en ligne hypothétiques des jeunes et des personnes âgées. Conformément à des recherches antérieures, on voit que les jeunes adultes utilisaient les trois types d’information : ils préféraient clairement des produits avec de meilleurs attributs et des notes moyennes des consommateurs plus élevées. Si faire un choix était difficile car il impliquait des compromis entre les attributs du produit, la plupart des jeunes adultes ont choisi le produit le mieux noté. Cependant, la préférence pour le produit mieux noté pourrait être annulée par un seul examen négatif ou positif riche en effets. Les personnes âgées ont été fortement influencées par un seul examen négatif riche en effets et ont également pris en considération les attributs du produit; cependant, ils n’ont pas pris en compte les notes moyennes des consommateurs ou les avis positifs uniques riches en effets. Ces résultats suggèrent que les personnes âgées ne considèrent pas les informations agrégées des consommateurs et les avis positifs se concentrant sur les expériences positives avec le produit, mais sont facilement influencées par les avis faisant état d’expériences négatives.

Grandes lignes :

  • Sont étudiées les intentions d’achat en ligne chez les personnes âgées et les étudiants.
  • Est étudié l’impact des notes moyennes des consommateurs et des critiques émotionnelles uniques.
  • Les étudiants mais pas les adultes plus âgés ont été fortement influencés par les notes moyennes des consommateurs.
  • Chez les étudiants, les avis positifs et négatifs ont annulé l’effet des notes moyennes.
  • Les personnes âgées ont été influencées par des critiques individuelles négatives, mais pas par des critiques positives.

[1] J.W. Lian, D.C. Yen, Online shopping drivers and barriers for older adults: age and
gender differences, Computers in Human Behavior 37 (2014) 133–143.
[2] M. Law, M. Ng, Age and gender differences: understanding mature online users with
the online purchase intention model, Journal of Global Scholars of Marketing
Science 26 (3) (2016) 248–269.
[3] Y.J. Ma, H. Kim, H.-h. Lee, Effect of individual differences on online review perception and usage behavior: the need for cognitive closure and demographics,
Journal of the Korean Society of Clothing and Textiles 36 (12) (2012) 1270–1284.
[4] P.Y. Chen, S.y. Wu, J. Yoon, The impact of online recommendations and consumer
feedback on sales, ICIS 2004 Proceedings, 2004, p. 58.
[5] K. Floyd, R. Freling, S. Alhoqail, H.Y. Cho, T. Freling, How online product reviews
affect retail sales: a meta-analysis, Journal of Retailing 90 (2) (2014) 217–232,
[6] R.A. King, P. Racherla, V.D. Bush, What we know and don’t know about online
word-of-mouth: a review and synthesis of the literature, Journal of Interactive
Marketing 28 (3) (2014) 167–183.
[7] N. Purnawirawan, M. Eisend, P. De Pelsmacker, N. Dens, A meta-analytic investigation of the role of valence in online reviews, Journal of Interactive Marketing
31 (2015) 17–27,
[8] Y. Liu, Word of mouth for movies: its dynamics and impact on box office revenue,
Journal of Marketing 70 (3) (2006) 74–89.
[9] E. Maslowska, E.C. Malthouse, V. Viswanathan, Do customer reviews drive purchase decisions? The moderating roles of review exposure and price, Decision
Support Systems 98 (2017) 1–9.
[10] S. Karimi, F. Wang, Online review helpfulness: impact of reviewer profile image,
Decision Support Systems 96 (2017) 39–48.
[11] J. Lee, D.h. Park, I. Han, The effect of negative online consumer reviews on product
attitude: an information processing view, Electronic Commerce Research and
Applications 7 (2008) 341–352.
[12] S. Sen, D. Lerman, Why are you telling me this? An examination into negative
consumer reviews on the web, Journal of Interactive Marketing 21 (4) (2007)
[13] C. Betsch, N. Haase, F. Renkewitz, P. Schmid, The narrative bias revisited: what
drives the biasing influence of narrative information on risk perceptions? Judgment
and Decision Making 10 (3) (2015) 241–264.
[14] P. Rozin, E.B. Royzman, Negativity bias, negativity dominance, and contagion,
Personality and Social Psychology Review 5 (4) (2001) 296–320.
[15] P.F. Wu, In search of negativity bias: an empirical study of perceived helpfulness of
online reviews, Psychology & Marketing 30 (11) (2013) 971–984.
[16] BrightLocal, Local Consumer Review Survey 2016, (2016) https://www.brightlocal.
[17] S. Hong, H.S. Park, Computer-mediated persuasion in online reviews: statistical
versus narrative evidence, Computers in Human Behavior 28 (3) (2012) 906–919.
[18] M. Ziegele, M. Weber, Example, please! Comparing the effects of single customer
reviews and aggregate review scores on online shoppers’ product evaluations,
Journal of Consumer Behaviour 14 (2015) 103–114.
[19] C. Betsch, C. Ulshöfer, F. Renkewitz, T. Betsch, The influence of narrative v. statistical information on perceiving vaccination risks, Medical Decision Making 31 (5)
(2011) 742–753,
[20] P.A. Ubel, C. Jepson, J. Baron, The inclusion of patient testimonials in decision aids,
Medical Decision Making 21 (1) (2001) 60–68.
[21] A. Winterbottom, H.L. Bekker, M. Conner, A. Mooney, Does narrative information
bias individual’s decision making? A systematic review, Social Science and
Medicine 67 (12) (2008) 2079–2088.
[23] P.B. Baltes, U.M. Staudinger, U. Lindenberger, Lifespan psychology: theory and
application to intellectual functioning. Annual Review of Psychology 50 (1999)
[24] L.L. Carstensen, The influence of a sense of time on human development, Science
312 (5782) (2006) 1913–1915.
[25] E. Peters, T.M. Hess, D. Västfjäll, C. Auman, Adult age differences in dual information processes: implications for the role of affective and deliberative processes
in older adults’ decision making, Perspectives on Psychological Science 2 (1) (2007)
[26] R. Mata, T. Pachur, B. von Helversen, R. Hertwig, J. Rieskamp, L. Schooler,
Ecological rationality: a framework for understanding and aiding the aging decision
maker, Frontiers in Decision Neuroscience 6 (Article 19) (2012) 1–6, https://doi.
[27] W.A. Rogers, A.J. Stronge, A.D. Fisk, Technology and Aging, Reviews of human
factors and ergonomics 1 (1) (2005) 130–171.
[28] T.A. Salthouse, Mental exercise and mental aging: evaluating the validity of the “use
it or lose it” hypothesis, Perspectives on Psychological Science 1 (1) (2006) 68–87.
[29] T. Salthouse, Consequences of age-related cognitive declines, Annual Review of
Psychology 63 (2012) 201–226.
[30] M.L. Finucane, C.K. Mertz, P. Slovic, E.S. Schmidt, Task complexity and older
adults’ decision-making competence, Psychology and Aging 20 (1) (2005) 71–84.
[31] R. Frey, R. Mata, R. Hertwig, The role of cognitive abilities in decisions from experience: age differences emerge as a function of choice set size, Cognition 142
(2015) 60–80,
[32] R. Mata, L. Nunes, When less is enough: cognitive aging, information search, and
decision quality in consumer choice, Psychology and Aging 25 (2010) 289–298,
[33] R. Mata, L.J. Schooler, J. Rieskamp, The aging decision maker: cognitive aging and
the adaptive selection of decision strategies, Psychology & Aging 22 (2007)
[34] B. von Helversen, R. Mata, Losing a dime with a satisfied mind: positive affect
predicts less search in sequential decision making, Psychology and Aging 27 (4)
(2012) 825–839,
[35] G. Gigerenzer, P.M. Toddthe ABC Research Group, Simple Heuristics That Make Us
Smart, Oxford University Press, 1999.
[36] R. Mata, B. von Helversen, J. Rieskamp, Learning to choose: cognitive aging and
strategy selection learning in decision making, Psychology and Aging 25 (2) (2010)
[37] J.A. Mikels, C.E. Löckenhoff, S.J. Maglio, L.L. Carstensen, M.K. Goldstein,
A. Garber, Following your heart or your head: focusing on emotions versus information differentially influences the decisions of younger and older adults,
Journal of Experimental Psychology: Applied 16 (1) (2010) 87.
[38] C.A. Cole, S.K. Balasubramanian, Age differences in consumers’ search for information: public policy implications, Journal of Consumer Research 20 (1993)
[39] C.M. Schaninger, D. Sciglimpaglia, The influence of cognitive personality traits and
demographics on consumer information acquisition, Journal of Consumer Research
8 (2) (1981) 208–216.
[40] R. Lambert-Pandraud, G. Laurent, E. Lapersonne, Repeat purchasing of new automobiles by older consumers: empirical evidence and interpretations, Journal of
Marketing 69 (2) (2005) 97–113.
[41] S.M. Carpenter, C. Yoon, Aging and consumer decision making, Annals of the New
York Academy of Sciences 1235 (1) (2011) 1–12.
[42] Q. Ma, K. Chen, A.H.S. Chan, P.L. Teh, Acceptance of ICTs by older adults: a review
of recent studies, International Conference on Human Aspects of IT for the Aged
Population, Springer, 2015, pp. 239–249.
[43] A. Ahmed, A.S. Sathish, Determinants of online shopping adoption: meta analysis
and review, European Journal of Social Sciences 49 (4) (2015) 483–510.
[44] G. Cohen, Language comprehension in old age, Cognitive Psychology 11 (4) (1979)
[45] R. De Beni, E. Borella, B. Carretti, Reading comprehension in aging: the role of
working memory and metacomprehension, Aging, Neuropsychology, and Cognition
14 (2) (2007) 189–212,
[46] L.H. Phillips, R.D. MacLean, R. Allen, Age and the understanding of emotions
neuropsychological and sociocognitive perspectives, The Journals of Gerontology.
Series B, Psychological Sciences and Social Sciences 57 (6) (2002) 526–P530.
[47] L.L. Carstensen, Motivation for social contact across the life span: a theory of socioemotional selectivity, Nebraska symposium on motivation, vol. 40, 1993, pp.
[48] S.T. Charles, L.L. Carstensen, Social and emotional aging, Annual Review of
Psychology 61 (2010) 383–409.
[49] A.E. Reed, L. Chan, J.A. Mikels, Meta-analysis of the age-related positivity effect:
age differences in preferences for positive over negative information, Psychology
and Aging 29 (1) (2014) 1–15.
[50] H.H. Fung, L.L. Carstensen, Sending memorable messages to the old: age differences
in preferences and memory for advertisements, Journal of Personality and Social
Psychology 85 (1) (2003) 163–178.
[51] M.K. Depping, A.M. Freund, Normal aging and decision making: the role of motivation, Human Development 54 (6) (2011) 349–367.
[52] M.J. Frank, L. Kong, Learning to avoid in older age, Psychology and Aging 23 (2)
(2008) 392–398,
[53] D. Hämmerer, S.C. Li, V. Müller, U. Lindenberger, Life span differences in electrophysiological correlates of monitoring gains and losses during probabilistic reinforcement learning, Journal of Cognitive Neuroscience 23 (3) (2011) 579–592.
[54] B. Eppinger, N.W. Schuck, L.E. Nystrom, J.D. Cohen, Reduced striatal responses to
B. von Helversen et al. Decision Support Systems 113 (2018) 1–10
reward prediction errors in older compared with younger adults, Journal of
Neuroscience 33 (24) (2013) 9905–9912.
[55] A. Mantonakis, P. Rodero, I. Lesschaeve, R. Hastie, Order in choice: effects of serial
position on preferences, Psychological Science 20 (11) (2009) 1309–1312, https://
[56] C. Mogilner, B. Shiv, S.S. Iyengar, Eternal quest for the best: sequential (vs. simultaneous) option presentation undermines choice commitment, Journal of
Consumer Research 39 (6) (2013) 1300–1312,
[57] A. Dieckmann, K. Dippold, Compensatory versus noncompensatory models for
predicting consumer preferences, Judgment and Decision Making 4 (3) (2009)
[58] W. Kopeć, K. Skorupska, A. Jaskulska, K. Abramczuk, R. Nielek, A. Wierzbicki,
LivingLab PJAIT: towards better urban participation of seniors, Proceedings of the
International Conference on Web Intelligence, ACM, 2017, pp. 1085–1092.
[59] W. Kopeć, B. Balcerzak, R. Nielek, G. Kowalik, A. Wierzbicki, F. Casati, Older adults
and hackathons: a qualitative study, Empirical Software Engineering (2017) 1–36.
[60] W. Kopeć, K. Abramczuk, B. Balcerzak, M. Juźwin, K. Gniadzik, G. Kowalik,
R. Nielek, A location-based game for two generations: teaching mobile technology
to the elderly with the support of young volunteers, eHealth 360, Springer, 2017,
pp. 84–91.
[61] D. Godes, D. Mayzlin, Using online conversations to study word-of-mouth communication, Marketing Science 23 (4) (2004) 545–560.
[62] P. Resnick, R. Zeckhauser, J. Swanson, K. Lockwood, The value of reputation on
eBay: a controlled experiment, Experimental Economics 9 (2) (2006) 79–101.
[63] H. Singmann, B. Bolker, J. Westfall, F. Aust, afex: Analysis of Factorial Experiments,
(2016) r package version 0.16-1.
[64] R.V. Lenth, Least-squares means: the R package lsmeans, Journal of Statistical
Software 69 (1) (2016) 1–33,
[65] F. Schieber, Human factors and aging: identifying and compensating for age-related
deficits in sensory and cognitive function, Impact of technology on successful aging,
2003, pp. 42–84.
[66] L.H. Phillips, R. Allen, Adult aging and the perceived intensity of emotions in faces
and stories, Aging Clinical and Experimental Research 16 (3) (2004) 190–199.
[67] N. Hu, N.S. Koh, S.K. Reddy, Ratings lead you to the product, reviews help you
clinch it? The mediating role of online review sentiments on product sales, Decision
Support Systems 57 (2014) 42–53.