Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions

Mirtalaie M, Hussain O, Chang E, Hussain F, (2018), Extracting sentiment knowledge from pros/cons product reviews: Discovering features along with the polarity strength of their associated opinions, Expert Systems with Applications, Volume 114, 30 December 2018, Pages 267-288


Mots clés : Analyse des sentiments basé sur les fonctionnalités, Avantages / inconvénients des produits,Force de polarité, Arborescence des produits

Résumé : L’extraction des connaissances sur les sentiments est un domaine de recherche en croissance dans la littérature. Il aide à analyser les opinions des utilisateurs sur différentes entités ou événements, qui peuvent ensuite être utilisées par les analystes à diverses fins. En particulier, l’analyse des sentiments basée sur les fonctionnalités est l’un des domaines de recherche difficiles qui analyse les opinions des utilisateurs sur les différentes fonctionnalités d’un produit ou d’un service. Parmi les trois formats pour les évaluations de produits, notre objectif dans cet article se limite à l’analyse du type avantages / inconvénients. En raison de la nature des avis pour / contre, ils sont généralement concis et suivent une structure différente des autres types d’avis. Par conséquent, des techniques spécialisées sont nécessaires pour analyser ces avis et extraire les caractéristiques des produits discutés par les clients ainsi que leurs attitudes personnelles

Grandes lignes :

  • Extraction de fonctionnalités à l’aide de règles syntaxique à partir des avis pour / contre.
  • Déterminer la polarité de l’opinion en fonction de sa force émotionnelle.
  • Comparer les résultats avec des approches de pointe dans différentes tâches.

Agarwal, B., Mittal, N., Bansal, P., & Garg, S. (2015). Sentiment analysis using
common-sense and context information. Computational Intelligence and Neuroscience, 2015, 9 Article ID 715730. doi:10.1155/2015/715730.
Agrawal, S., & Siddiqui, T. J. (2009). Using syntactic and contextual information for
sentiment polarity analysis. In Proceedings of the 2nd international conference on
interaction sciences information technology, culture and human – ICIS ’09 (pp. 620–
623). doi:10.1145/1655925.1656037.
Alghunaim, A., Mohtarami, M., Cyphers, S., & Glass, J. (2015). A vector space approach for aspect based sentiment analysis. In In Proceedings of NAACL-HLT
(pp. 116–122).
Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing
deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236–246. doi:10.1016/j.eswa.2017.02.
Bagheri, A., Saraee, M., & De Jong, F. (2013). Care more about customers: Unsupervised domain-independent aspect detection for sentiment analysis of customer reviews. Knowledge-Based Systems, 52, 201–213. doi:10.1016/j.knosys.2013.
Benamara, F., Irit, S., Cesarano, C., Federico, N., & Reforgiato, D. (2007).
Sentiment analysis : Adjectives and adverbs are better than adjectives
alone. In In Proc of int conf on weblogs and social media (pp. 1–4).
Bhattacharjee, S., Das, A., Bhattacharya, U., Parui, S. K., & Roy, S. (2015). Sentiment
analysis using cosine similarity measure. In IEEE 2nd international conference on
Recent Trends in Information Systems (ReTIS) (pp. 27–32). doi:10.1109/ReTIS.2015.
Bright, D. A. (2017). Using social network analysis to design crime prevention
strategies: A case study of methamphetamine manufacture and trafficking. In
B. LeClerc, & E. U. Savona (Eds.), Crime prevention in the 21st century: Insightful
approaches for crime prevention initiatives (pp. 143–164). Cham: Springer International Publishing. doi:10.1007/978-3-319-27793-6_11.
Cambria, E., Poria, S., Gelbukh, A., & Nacional, I. P. (2017). Sentiment analysis is a
big suitcase. IEEE Intelligent Systems, 74–80. doi:10.1109/MIS.2017.4531228.
Carenini, G., Ng, R. T., & Zwart, E. (2005). Extracting knowledge from evaluative text.
In K-CAP ’05: Proceedings of the 3rd international conference on Knowledge capture
(pp. 11–18). doi:10.1145/1088622.1088626.
Carter, D., & Inkpen, D. (2015). Inferring aspect-specific opinion structure in product reviews using co-training. In 16th international conference in computational linguistics and intelligent text processing: 9042 (pp. 225–240). doi:10.1007/
Chen, D., & Manning, C. (2014). A Fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 740–750). doi:10.3115/v1/D14-1082.
Chen, Y. Y., Ferrer, X., Wiratunga, N., & Plaza, E. (2015). Aspect selection for social
recommender systems. In E. Hüllermeier, & M. Minor (Eds.). In Case-based reasoning research and development. ICCBR 2015. Lecture Notes in Computer Science:

  1. Cham: Springer.
    Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of
    Big Data, 2, 5. doi:10.1186/s40537-015-0015-2.
    Ganapathibhotla, M., & Liu, B. (2008). Mining opinions in comparative sentences.
    In Proceedings of the 22nd international conference on computational linguistics –
    COLING ’08 (pp. 241–248). 1(August). doi:10.3115/1599081.1599112.
    Ganeshbhai, S. Y., & Shah, B. K. (2015). Feature based opinion mining: A survey. In
    Souvenir of the 2015 IEEE international advance computing conference, IACC 2015
    (pp. 919–923). doi:10.1109/IADCC.2015.7154839.
    García-Pablos, A., Cuadros, M., & Rigau, G. (2015). Unsupervised word polarity tagging by exploiting continuous word representations. Procesamiento de Lenguaje
    Natural, 55, 127–134.
    Goldberg, A. B., Fillmore, N., Andrzejewski, D., Xu, Z., Gibson, B., & Zhu, X. (2009).
    May all your wishes come true : A study of wishes and how to recognize them.
    In Proceedings of human language technologies: The 2009 annual conference of the
    north american chapter of the association for computational linguistics on – NAACL
    ’09 (pp. 263–271). doi:10.3115/1620754.1620793.
    Hogenboom, A., Van Iterson, P., Heerschop, B., Frasincar, F., & Kaymak, U. (2011).
    Determining negation scope and strength in sentiment analysis. In Conference proceedings – IEEE international conference on systems, man and cybernetics
    (pp. 2589–2594). doi:10.1109/ICSMC.2011.6084066.
    Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. In 19th
    national conference on artifical intelligence (pp. 755–760). doi:10.1145/1014052.
    Huang, J., Etzioni, O., Zettlemoyer, L., Clark, K., & Lee, C. (2012). Revminer: An extractive interface for navigating reviews on a smartphone. In Proceedings of the
    25th annual ACM symposium on user interface software and technology (pp. 3–12).
    Jeyapriya, A., & Selvi, C. S. K. (2015). Extracting aspects and mining opinions in product reviews using supervised learning algorithm. In 2nd international conference on electronics and communication systems, ICECS 2015 (pp. 548–552). IEEE.
    Jhamtani, H., Chhaya, N., Karwa, S., Varshney, D., Kedia, D., & Gupta, V. (2015). Identifying suggestions for improvement of product features from online product reviews. In T.-Y. Liu, C. N. Scollon, & W. Zhu (Eds.), Social informatics (pp. 112–119).
    Switzerland: Cham: Springer International Publishing.
    Kang, Y., & Zhou, L. (2016). RubE: Rule-based methods for extracting product features from online consumer reviews. Information & Management, 54(2). doi:10.
    Kim, S.-M., & Hovy, E. (2006). Automatic identification of pro and con reasons in online reviews. In Proceedings of the COLING/ACL on main conference poster sessions
    (pp. 483–490). doi:10.3115/1273073.1273136.
    Lau, R. Y. K., Li, C., & Liao, S. S. Y. (2014). Social analytics: Learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decision Support Systems,
    65(2014), 80–94. doi:10.1016/j.dss.2014.05.005.
    Li, Y. M., Chen, H. M., Liou, J. H., & Lin, L. F. (2014). Creating social intelligence for
    product portfolio design. Decision Support Systems, 66, 123–134. doi:10.1016/j.
    Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers.
    Liu, B. (2015). Sentiment analysis: mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139084789.
    Liu, B., & Hu, M. (2005). Opinion observer: analyzing and comparing opinions on
    the web. In Proceedings of the 14th international World Wide Web conference
    Liu, J., & Seneff, S. (2009). Review sentiment scoring via a parse-and-paraphrase
    paradigm. In Proceedings of the 2009 conference on empirical methods in natural language processing volume 1 – EMNLP ’09: 1 (p. 161). doi:10.3115/1699510.
    Liu, Q., Gao, Z., Liu, B., & Zhang, Y. (2015). Automated rule selection for aspect extraction in opinion mining. In Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) (pp. 1291–1297).
    Lobeck, A. C. (2000). Discovering grammar: An introduction to english sentence structure. Oxford University Press.
    Manek, A. S., Shenoy, P. D., Mohan, M. C., & Venugopal, K. R. (2016). Aspect
    term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web. doi:10.1007/
    Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).
    The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd
    annual meeting of the association for computational linguistics: system demonstrations (pp. 55–60). doi:10.3115/v1/P14-5010.
    Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the
    ACM, 38(11), 39–41.
    Mirtalaie, M. A., Hussain, O. K., & Chang, E. (2016). FEATURE : New product development using feature- drift based framework for unique aspect recommendation.
    IEEE international conference on e-business engineering. doi:10.1109/ICEBE.2016.
    Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2017a). A decision support framework for identifying novel ideas in new product development from
    cross-domain analysis. Information Systems, 69, 59–80. doi:10.1016/j.is.2017.04.
    Mirtalaie, M. A., Hussain, O. K., Chang, E., & Hussain, F. K. (2017b). Sentiment analysis of specific product’s features using product tree for application in new product development. In Advances in Intelligent Networking and Collaborative Systems
    (INCoS 2017) (pp. 82–95). Springer.
    Mukherjee, S., & Joshi, S. (2013). Sentiment aggregation using conceptnet ontology. In Proceedings of the sixth international joint conference on natural language processing (pp. 570–578). (October)Retrieved from. http://www.aclweb.
    org/anthology/I13-1065 .
    Nielsen, F. A. ˚ (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In CEUR workshop proceedings: 718 (pp. 93–98). doi:10.1016/j.
    Norman, B., & Ann, M. J. (2011). Mapping and leveraging influencers in social media to shape corporate brand perceptions. Corporate Communications: An International Journal, 16(3), 184–191. doi:10.1108/13563281111156853.
    Pasierbinska-Wilson, Z.. Will social data insights kill the marketing focus group?
    Retrieved 2 February 2018, from https://www.martechadvisor.com/articles/
    Poria, S., Cambria, E., Ku, L.-W., Gui, C., & Gelbukh, A. (2014). A rule-based approach
    to aspect extraction from product reviews. Workshop on Natural Language Processing for Social Media (SocialNLP), 28–37.
    Qiu, G., Liu, B., Bu, J., & Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37, 9–27. doi:10.
    Ramanand, J., Bhavsar, K., & Pedanekar, N. (2010). Wishful thinking – Finding suggestions and “buy” wishes from product reviews. In Proceedings of the NAACL HLT
    2010 workshop on computational approaches to analysis and generation of emotion
    in text (pp. 54–61).
    Rana, T. A., & Cheah, Y. N. (2017). A two-fold rule-based model for aspect extraction.
    Expert Systems with Applications, 89, 273–285. doi:10.1016/j.eswa.2017.07.047.
    288 M.A. Mirtalaie et al. / Expert Systems With Applications 114 (2018) 267–288
    Samha, A. K., Li, Y., & Zhang, J. (2015). Aspect – Based opinion mining from product
    reviews using conditional random fields. AusDM 2015: The 13th Australasian Data
    Mining Conference. University of Technology.
    Schouten, K., & Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE
    Transactions on Knowledge and Data Engineering, 28(3), 813–830. doi:10.1109/
    Suleman, K., & Vechtomova, O. (2015). Discovering aspects of online consumer reviews. Journal of Information Science, 1–15. doi:10.1177/0165551515595742.
    Thelwall, M. (2013). Heart and soul: Sentiment strength detection in the social
    web with sentistrength. Proceedings of the CyberEmotions, 5, 1–14. doi:10.1007/
    Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich partof-speech tagging with a cyclic dependency network. In Proceedings of the
    2003 conference of the North American chapter of the association for computational linguistics on human language technology – NAACL ’03: 1 (pp. 173–180).
    Wang, H., & Wang, W. (2014). Product weakness finder: An opinion-aware
    system through sentiment analysis. Industrial Management & Data Systems,
    114(8), 1301–1320. Retrieved from http://www.emeraldinsight.com/doi/pdfplus/
    10.1108/IMDS-02-2014-0069 .
    Wang, Z., & Bovik, A. C. (2009). Mean squared error: Lot it or leave it? A new look at
    signal fidelity measures. IEEE Signal Processing Magazine, 26(1), 98–117. doi:10.
    Xie, Y., Chen, Z., Cheng, Y., Zhang, K., Agrawal, A., Liao, W.-K., & Choudhary, A. (2013). Detecting and tracking disease outbreaks by mining social media data. In Proceedings of the twenty-third international joint conference on artificial intelligence. AAAI Press.
    Ye, K., Li, L., Guo, M., Qian, Y., & Yuan, H. (2015). Summarizing product aspects from
    massive online review with word representation. Knowledge Science Engineering
    Management, 9403(71572029), 318–323. doi:10.1007/978-3-319-25159-2.
    Yu, J., Zha, Z.-J., Wang, M., & Chua, T.-S. (2011). Aspect ranking: Identifying important product aspects from online consumer reviews. In Proceedings of the 49th
    annual meeting of the association for computational linguistics (pp. 1496–1505).
    Zhao, B., Rubinstein, B. I. P., Gemmell, J., & Han, J. (2012). A Bayesian approach to
    discovering truth from conflicting sources for data integration. Vldb, 5(6), 550–
  2. doi:10.14778/2168651.2168656.
    Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. In
    Proceedings of the 15th ACM International conference on information and knowledge management – CIKM ’06 43. doi:10.1145/1183614.1183625